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In this note, we consider the following minimization problem:

minimize f(x),

subject to x ∈ C,

where f : Rd → (−∞,∞] and C ⊂ dom(f) := {x ∈ Rd : f(x) < ∞}. Let f ∗ = infx∈C f(x)
denote the optimal value of this minimization problem. In this note, we study fundamental
methods that use the gradient of f to approximate f ∗.
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1 Gradient Descent under Smoothness

Throughout this section, we consider the unconstrained case, namely, C = Rd; we also
assume that f : Rd → R is differentiable. The gradient method is as follows: given an initial
point x0 ∈ Rd, for k ≥ 0, iterate

xk+1 ← xk − tk∇f(xk) for some suitable tk > 0,

where we call tk > 0 the step size at xk. In other words, the gradient method updates a point
xk ∈ Rd by moving it along the direction parallel to −∇f(xk) by a suitable amount according
to the step size tk > 0. The rationale behind using such an update rule for minimizing f is
motivated by the fact that −∇f(xk) is a direction that decreases f at point xk.

Descent directions Given ∇f(xk) ̸= 0, we call v ∈ Rd a descent direction of f at xk if the
directional derivative Dvf(xk) = ⟨∇f(xk), v⟩ is negative. For any descent direction v ∈ Rd,

f(xk + tv) = f(xk) + t⟨∇f(xk), v⟩+ o(t), (1)

which implies f(xk+tv) < f(xk) for sufficiently small t > 0 such that |o(t)| < −t⟨∇f(xk), v⟩.
Clearly, −∇f(xk) is a descent direction; in fact, it is a steepest descent direction, which
provides a direction in which f decreases most rapidly in the following sense: provided
∇f(xk) ̸= 0,

argmin
v∈Sd−1

Dvf(xk) = argmin
v∈Sd−1

⟨∇f(xk), v⟩ = −
∇f(xk)

∥∇f(xk)∥2
.

In particular, taking −∇f(xk) as a descent direction, (1) becomes

f(xk − t∇f(xk)) = f(xk)− t∥∇f(xk)∥22 + o(t). (2)

Again, as long as xk is not a stationary point, i.e.,∇f(xk) ̸= 0, we can always (monotonically)
decrease the value of f by taking tk > 0 sufficiently small so that o(tk) ≤ tk∥∇f(xk)∥22 and
updating xk to the point xk+1 ← xk − tk∇f(xk). Therefore, the gradient method becomes a
descent method, namely, f(xk+1) ≤ f(xk) for a sufficiently small step size tk, which leads to
the name “gradient descent”.

Advantages of the gradient method The gradient method is implementable as long as
∇f(x) is computable for any x ∈ Rd. Therefore, the gradient method is suitable for applica-
tions where the computation ∇f , which we often call the first-order oracle, is inexpensive.
Especially, the gradient method requires less memory than other algorithms based on higher
order oracles, e.g., the second derivative ∇2f ∈ Rd×d.

Remark 1. Note that the gradient method stops if ∇f(xk) = 0 for some k ≥ 0, i.e., it stops
if it reaches a stationary point. In practice, one may specify a stopping criterion so that the
gradient method terminates once ∇f(xk) is sufficiently close to 0. For instance, the gradient
method terminates if ∥∇f(xk)∥2 ≤ ε, namely, xk is an ε-stationary point of f , where ε is a
user-specified stopping tolerance.
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Remark 2 (Other interpretations). There are other ways to interpret the gradient method
update rule xk+1 ← xk − tk∇f(xk).

• Quadratic approximation: for any tk > 0, note that xk − tk∇f(xk) is the unique
minimizer of the following quadratic function

x 7→ f(xk) + ⟨∇f(xk), x− xk⟩+
1

2tk
∥x− xk∥22.

In other words,

xk+1 = argmin
x∈Rd

(
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2tk
∥x− xk∥22

)
.

• Local first-order approximation: one can also view it as the unique minimizer of the
following local first-order approximation

xk+1 = argmin
x∈Rd

∥x−xk∥2≤rk

(f(xk) + ⟨∇f(xk), x− xk⟩) ,

where rk = tk∥∇f(xk)∥2.

1.1 Gradient descent: sufficient decrease under smoothness

We have mentioned that the gradient method is a descent method under the differentiability
of f , namely, f(xk+1) ≤ f(xk) if the step size tk > 0 is sufficiently small. This means that
f(xk) will converge as k →∞ provided f is bounded below, i.e., f ∗ > −∞. Of course, there is
no guarantee that the limit limk→∞ f(xk) is the minimum f ∗; in other words, it is impossible
to quantify the gap between limk→∞ f(xk) and f ∗ without any further assumptions.

In this section, we focus on the most fundamental assumption (smoothness of f) for
the gradient method to produce sufficient decrease in f . We will later see that sufficient
decrease enables the gradient method to find a stationary point, which will play a crucial
role in finding the minimum f ∗ under convexity.

Definition 1. f : Rd → R is said to be L-smooth if

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ Rd.

In other words, ∇f is L-Lipschitz.

In (2), we have already seen that o(tk) ≤ tk∥∇f(xk)∥22 leads to f(xk+1) ≤ f(xk). From
this, one can deduce that the key to the sufficient decrease, namely, f(xk+1) is sufficiently
smaller than f(xk), is to control the error of the first-order approximation, i.e., o(t) in (2).
The next lemma shows that L-smoothness yields o(t) = O(t2) so that o(t) converges to 0
much faster than t as t→ 0.

Lemma 1. If f : Rd → R is L-smooth, we have

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥22 ∀x, y ∈ Rd.
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Proof. Let g(t) = f(x + t(y − x)) for t ∈ [0, 1]; then, g′(t) = ⟨∇f(x + t(y − x)), y − x⟩,
g(0) = f(x), and g(1) = f(y). Since

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩ dt,

we have

|f(y)− f(x)− ⟨∇f(x), y − x⟩| =
∣∣∣∣∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt
∣∣∣∣

≤
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥2∥y − x∥2 dt

≤
∫ 1

0

Lt∥y − x∥22 dt

=
L

2
∥y − x∥22,

where the first inequality follows from the Cauchy-Schwarz inequality and the second in-
equality follows from the L-smoothness of f .

By Lemma 1, we have the following concrete upper bound on the error of the first-order
approximation o(t) in (2):

|o(t)| =
∣∣f(xk − t∇f(xk))− f(xk) + t∥∇f(xk)∥22

∣∣ ≤ Lt2

2
∥∇f(xk)∥22,

Therefore,

f(xk − t∇f(xk)) ≤ f(xk)− t

(
1− Lt

2

)
∥∇f(xk)∥22,

implying that updating from xk to xk − t∇f(xk) monotonically decreases the value of f
provided 0 < t ≤ 2

L
; in other words, the gradient method is a descent method.

Particularly, we have

f(xk − t∇f(xk)) ≤ f(xk)−
t

2
∥∇f(xk)∥22 if 0 < t ≤ 1

L
, (3)

which means that xk → xk − t∇f(xk) decreases the value of f by at least t
2
∥∇f(xk)∥22. We

often say that (3) provides sufficient decrease.

Choosing the step size When L is known, letting tk = 1
L
for all k ≥ 0, namely, taking

the constant step size, is the simplest way to enjoy the above sufficient decrease. In practice,
however, it may be difficult to estimate the constant L. In such a case, one may repeat
decreasing t until the sufficient decrease is satisfied, i.e.,

f(xk − t∇f(xk)) ≤ f(xk)−
t

2
∥∇f(xk)∥22.

More generally, one may use the following backtracking line search method to achieve a
slightly different form of sufficient decrease.
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Backtracking line search

• require t̄ > 0, α ∈ (0, 1), and β ∈ (0, 1),

• set tk ← t̄,

• repeat tk ← βtk until f(xk − tk∇f(xk)) ≤ f(xk)− αtk∥∇f(xk)∥22.

1.2 Finding a stationary point under smoothness

The gradient method is all about local movement hoping to decrease the value of f at
every iteration based on the first-order oracle. However, this first-order information reveals
nothing about the optimal value or global minimizers. Even if we have sufficient decrease
under smoothness as earlier, the gradient method may not reach the optimal value f ∗ without
further assumptions on f ; all we can do with the gradient method is to keep moving as long
as it is not a stationary point.

It turns out, however, that sufficient decrease allows us to find a stationary point under
smoothness. More concretely, if f is L-smooth, we can quantify the smallest possible norm
of the gradient ∥∇f∥2 after N iterations as O(1/

√
N).

Proposition 1. Suppose f : Rd → R is L-smooth and f ∗ = infx∈Rd f(x) > −∞. Then, the
gradient method with constant step size t ∈ (0, 1/L] yields

min
0≤k≤N

∥∇f(xk)∥2 ≤

√
2(f(x0)− f ∗)

t(N + 1)
.

Proof. From (3) and xk+1 = xk − t∇f(xk), we have

t

2
∥∇f(xk)∥22 ≤ f(xk)− f(xk+1),

which verifies that the gradient method is a descent method.

min
0≤k≤N

∥∇f(xk)∥22 ≤
1

N + 1

N∑
k=0

∥∇f(xk)∥22 ≤
2(f(x0)− f(xN+1))

t(N + 1)
≤ 2(f(x0)− f ∗)

t(N + 1)
.

Remark 3. Another way to write Proposition 1 is as follows: one can find an ε-stationary
point of f , i.e., a point x ∈ Rd such that ∥∇f(x)∥2 ≤ ε, in O(ε−2) iterations. To see this,
observe that min0≤k≤N ∥∇f(xk)∥2 ≤ ε holds provided

N + 1 ≥ 2(f(x0)− f ∗)

tε2
.

A caveat here is that one needs to keep track of the values ∥∇f(xk)∥2 for all k ≥ 0 and find
the smallest one.
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Remark 4 (Backtracking line search). In Proposition 1, suppose we use backtracking line
search instead. To simplify the analysis, let α = 1

2
. Then, for any k ≥ 0, we still have

tk
2
∥∇f(xk)∥22 ≤ f(xk)− f(xk+1),

which leads to

min
0≤k≤N

∥∇f(xk)∥22 ≤
1

N + 1

N∑
k=0

∥∇f(xk)∥22 ≤
2

N + 1

N∑
k=0

f(xk)− f(xk+1)

tk
.

Moreover, by (3), one can deduce that tk = t̄ or tk
β
> 1

L
, which implies tk ≥ t∗ := t̄ ∧ β

L
for

all k ≥ 0. Therefore,

min
0≤k≤N

∥∇f(xk)∥22 ≤
2(f(x0)− f ∗)

t∗(N + 1)
.

Hence, we reach the same conclusion with the backtracking line search method. See also
Theorem 3.2 of [NW06].

Note that Proposition 1 says nothing about the convergence of f(xk) or xk; we have solely
relied on smoothness on top of the assumption that f ∗ > −∞ to find a stationary point. To
find the minimum f ∗, we will impose convexity, under which any stationary point is a global
minimizer.
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2 Gradient Descent under Smoothness and Convexity

We keep analyzing the smooth unconstrained case: C = Rd and f : Rd → R is L-smooth.
We impose an additional assumption that f is convex and study how to approximate the
minimum f ∗ = infx∈Rd f(x) > −∞ using the gradient method.

2.1 Finding the minimum under convexity

If f is convex, any stationary point is a global minimizer. Though we have shown in Propo-
sition 1 that the gradient method can find a stationary point under smoothness, that result
does not explicitly quantify the gap between f(xk) and the minimum f ∗. To find the min-
imum, we need a related yet different approach to analyze the gradient descent method.
Using the additional convexity assumption, it turns out that we can explicitly quantify the
gap between the value of f after N iterations and the minimum f ∗ as O(1/N).

Proposition 2. Suppose f : Rd → R is L-smooth and convex, and f ∗ = f(x∗) for some
x∗ ∈ Rd. Then, the gradient method with constant step size t ∈ (0, 1/L] yields

f(xN)− f ∗ ≤ ∥x0 − x∗∥22
2tN

.

Proof. To derive an upper bound on the gap f(xk+1) − f ∗, let us decompose the gap as
follows:

f(xk+1)− f ∗ = f(xk+1)− f(xk)︸ ︷︷ ︸
sufficient decrease (3)

+ f(xk)− f ∗︸ ︷︷ ︸
convexity of f

,

where the two terms on the right-hand side can be further bounded by the sufficient decrease
(3) and convexity of f , namely, we can upper bound f(xk)− f ∗ by the linear approximation
⟨∇f(xk), xk − x∗⟩. Accordingly, we have

f(xk+1)− f ∗ ≤ ⟨∇f(xk), xk − x∗⟩ − t

2
∥∇f(xk)∥22.

Using 2⟨a, b⟩ − ∥a∥22 = ∥b∥22 − ∥b− a∥22, note that

⟨∇f(xk), xk − x∗⟩ − t

2
∥∇f(xk)∥22 =

2⟨xk − xk+1, xk − x∗⟩ − ∥xk − xk+1∥22
2t

=
∥xk − x∗∥22 − ∥xk+1 − x∗∥22

2t
.

(4)

Therefore, we have the following bound via a telescoping term:

f(xk+1)− f ∗ ≤ ∥xk − x∗∥22 − ∥xk+1 − x∗∥22
2t

. (5)

As f(xk+1) ≤ f(xk), we have

f(xN)− f ∗ ≤ 1

N

N−1∑
k=0

(f(xk+1)− f ∗) ≤ ∥x0 − x∗∥22 − ∥xN − x∗∥22
2tN

≤ ∥x0 − x∗∥22
2tN

.
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Remark 5. Another way to write Proposition 2 is as follows: one can find an ε-suboptimal
point of f , i.e., a point x ∈ Rd such that f(x)− f ∗ ≤ ε, in O(ε−1) iterations.

Remark 6. In the proof of Proposition 2, convexity is used to derive the following upper
bound on the difference f(xk)− f ∗, namely, the primal error at xk:

f(xk)− f ∗ ≤ ⟨∇f(xk), xk − x∗⟩.

In words, the primal error at xk is at most ℓk(xk)− ℓk(x
∗), where ℓk(x) := ⟨∇f(xk), x⟩ is the

local linear approximation of f at xk. This essentially means that for a convex function f ,
we may analyze f(xk)− f ∗ for the worst case as if f was a linear function ℓk instead. Then,
for such a linear function, one can obtain (4) by definition, which leads to the telescoping
bound (5).

Remark 7 (Backtracking line search). In Proposition 2, suppose we use backtracking line
search instead. To simplify the analysis, let α = 1

2
. As in Remark 4, one can still derive (5)

with t replaced by tk, which leads to

f(xN)− f ∗ ≤ 1

N

N−1∑
k=0

(f(xk+1)− f ∗) ≤ 1

N

N−1∑
k=0

∥xk − x∗∥22 − ∥xk+1 − x∗∥22
2tk

.

As in Remark 4, recall that tk ≥ t∗ := t̄ ∧ β
L
for all k ≥ 0. Therefore,

f(xN)− f ∗ ≤ ∥x0 − x∗∥22
2t∗N

.

Hence, we reach the same conclusion with the backtracking line search method.

Remark 8 (Stationary point). Before stating Proposition 2, we have briefly mentioned that
Proposition 1, i.e., small ∥∇f(xk)∥2, does not directly translate into small f(xk) − f ∗. To
this end, we need to employ the convexity again. In the proof of Proposition 2, for any
m < N , applying (3) yields

f(xm)− f(xN) =
N−1∑
k=m

(f(xk)− f(xk+1)) ≥
t

2

N−1∑
k=m

∥∇f(xk)∥22.

Therefore,

min
0≤k≤N

∥∇f(xk)∥22 ≤
1

N −m

N−1∑
k=m

∥∇f(xk)∥22 ≤
2(f(xm)− f(xN))

t(N −m)
.

By Proposition 2,

f(xm)− f(xN) ≤ f(xm)− f ∗ ≤ ∥x0 − x∗∥22
2tm

.

Therefore,

min
0≤k≤N

∥∇f(xk)∥22 ≤
∥x0 − x∗∥22
t2(N −m)m

.
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By letting m = ⌊N/2⌋, we conclude that

min
0≤k≤N

∥∇f(xk)∥2 ≤ O(1/N),

meaning that we can find an ε-stationary point in O(ε−1) iterations. Compare this with
Proposition 1; convexity provides a faster convergence of min0≤k≤N ∥∇f(xk)∥2. The above
argument is based on [Nes12].

Remark 9. It is important to remember that Proposition 2 does not guarantee the conver-
gence of xk to x∗. Nevertheless, we can show that ∥xk − x∗∥2 decreases for any minimizer
x∗ ∈ Optf := {x ∈ Rd : f(x) = f ∗}, where Optf denotes the set of all minimizers; in fact,
we have already shown this by (5), which is true for t ∈ (0, 1/L]. More generally, we can
prove this for any t ∈ (0, 2/L) by using the co-coercivity of ∇f implied by convexity and
L-smoothness of f ; see Lemma 2 below. To see this, invoking (4) again (notice that (4) is
true for any t > 0), provided t ∈ (0, 2/L), we have

∥xk − x∗∥22 − ∥xk+1 − x∗∥22 = 2t⟨∇f(xk), xk − x∗⟩ − t2∥∇f(xk)∥22

≥ t

(
2

L
− t

)
∥∇f(xk)∥22

≥ 0,

(6)

which shows that ∥xk−x∗∥2 decreases. As this is true for any minimizer x∗, one can deduce
that the distance from xk to the set of all minimizers Optf must decrease as well; in other
words, the distance infx∈Optf ∥xk − x∥2 decreases.

Lemma 2. Let f : Rd → R be a convex function and L > 0. Then, the following are
equivalent.

(i) f is L-smooth.

(ii) f satisfies

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥22 ∀x, y ∈ Rd.

(iii) ∇f is co-coercive, namely,

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

L
∥∇f(x)−∇f(y)∥22 ∀x, y ∈ Rd. (7)

Proof. (i) implies (ii) by Lemma 1. (iii) implies (i) by the Cauchy-Schwarz inequality. For
these two directions, convexity of f is not used. We show that (ii) implies (iii); here, convexity
is necessary. To this end, fix x ∈ Rd. Define g(z) = f(z) − ⟨∇f(x), z⟩ for all z ∈ Rd; then,
g is convex, and x is a minimizer of g as ∇g(x) = 0. Also, from (ii), one can verify that g
satisfies

|g(z)− g(y)− ⟨∇g(y), z − y⟩| ≤ L

2
∥z − y∥22 ∀z, y ∈ Rd.
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Therefore,

g(x) = inf
z∈Rd

g(z) ≤ inf
z∈Rd

(
g(y) + ⟨∇g(y), z − y⟩+ L

2
∥z − y∥22

)
︸ ︷︷ ︸

=:Q(z)

,

where the quadratic function Q is minimized by z = y − ∇g(y)
L

. Hence,

g(x) ≤ inf
z∈Rd

Q(z) = g(y)− ∥∇g(y)∥
2
2

2L
.

Accordingly,

f(y)− f(x)− ⟨∇f(x), y − x⟩ = g(y)− g(x) ≥ ∥∇g(y)∥
2
2

2L
=
∥∇f(y)−∇f(x)∥22

2L
.

Reversing the role of x and y,

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ ∥∇f(x)−∇f(y)∥
2
2

2L
.

Combining the above inequalities, we have (7).

2.2 Convergence to the minimizer under strong convexity

As noted in Remark 9, Proposition 2 does not guarantee the convergence of xk to x∗. The
main catch is that (6) is insufficient to prove such a result. In order to prove convergence,
we want to modify (6) as follows: there exists a constant γ ∈ (0, 1) such that

∥xk − x∗∥22 − ∥xk+1 − x∗∥22 = 2t⟨∇f(xk), xk − x∗⟩ − t2∥∇f(xk)∥22
want

≥ γ∥xk − x∗∥22.

This essentially means that we want a lower bound on ⟨∇f(xk), xk − x∗⟩ that involves the
term ∥xk − x∗∥22. It turns out that such a lower bound is obtainable if f is strongly convex.

Lemma 3. If f : Rd → R is L-smooth and µ-strongly convex, then µ ≤ L must hold and

⟨∇f(x)−∇f(y), x− y⟩ ≥ µL

µ+ L
∥x− y∥22 +

1

µ+ L
∥∇f(x)−∇f(y)∥22 ∀x, y ∈ Rd. (8)

Proof. Let g(x) = f(x) − µ
2
∥x∥22 for all x ∈ Rd; then, ∇g(x) = ∇f(x) − µx. The µ-strong

convexity of f implies that g is convex. Combined with the L-smoothness of f , we have for
any x, y ∈ Rd,

0 ≤ ⟨∇g(x)−∇g(y), x− y⟩ = ⟨∇f(x)−∇f(y), x− y⟩ − µ∥x− y∥22 ≤ (L− µ)∥x− y∥22.

Hence, we have µ ≤ L. If µ = L, we must have ⟨∇f(x) − ∇f(y), x − y⟩ = µ∥x − y∥22 for
all x, y ∈ Rd, which, combined with (7) with L = µ, yield (8). Consider the case µ < L.
From ⟨∇g(x)−∇g(y), x− y⟩ ≤ (L− µ)∥x− y∥22, one can deduce, by mimicking the proof of
Lemma 3, that

|g(y)− g(x)− ⟨∇g(x), y − x⟩| ≤ L− µ

2
∥y − x∥22 ∀x, y ∈ Rd,
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which, together with the convexity of g, implies that ∇g is co-coercive by Lemma 2, namely,

1

L− µ
∥∇g(x)−∇g(y)∥22 ≤ ⟨∇g(x)−∇g(y), x− y⟩

= ⟨∇f(x)−∇f(y), x− y⟩ − µ∥x− y∥22.

Plugging in ∇g(x)−∇g(y) = ∇f(x)−∇f(y)− µ(x− y), we have (8).

Proposition 3. Suppose f : Rd → R is L-smooth and µ-strongly convex, and f ∗ = f(x∗)
for some x∗ ∈ Rd so that x∗ is the unique minimizer of f . Then, the gradient method with
constant step size t ∈ (0, 2/(µ+ L)] yields

∥xN − x∗∥22 ≤
(
1− 2tµL

µ+ L

)N

∥x0 − x∗∥22

and

f(xN)− f ∗ ≤ L

2

(
1− 2tµL

µ+ L

)N

∥x0 − x∗∥22,

meaning that one can find an ε-suboptimal point in O(log(1/ε)) iterations.

Proof. Now, provided t ∈ (0, 2/(µ+ L)),

∥xk − x∗∥22 − ∥xk+1 − x∗∥22 = 2t⟨∇f(xk), xk − x∗⟩ − t2∥∇f(xk)∥22

≥ 2tµL

µ+ L
∥xk − x∗∥22 + t

(
2

µ+ L
− t

)
∥∇f(xk)∥22

≥ 2tµL

µ+ L
∥xk − x∗∥22,

where the equality is (4) and the first inequality follows from (8) with ∇f(x∗) = 0. Hence,

∥xN − x∗∥22 ≤
(
1− 2tµL

µ+ L

)N

∥x0 − x∗∥22.

Also, we have

f(xN)− f ∗ ≤ L

2
∥xN − x∗∥22 ≤

L

2

(
1− 2tµL

µ+ L

)N

∥x0 − x∗∥22,

where the first inequality follows from Lemma 1 with ∇f(x∗) = 0.

11



3 Projection for Constrained Convex Optimization

In this section, we assume C ⊂ Rd is closed and convex. Also, we assume f is L-smooth
and convex on C; here, L-smoothness on C means that ∇f is well-defined on C and is
L-Lipschitz. In this setting, the gradient descent update rule may produce a point outside
of C, namely, one may encounter the situation where x− t∇f(x) /∈ C for x ∈ C and t > 0.
A simple remedy for this situation is to project the point x− t∇f(x) back to the set C. It
turns out that such a projection is well-defined as long as C is closed and convex.

Definition 2. Let C ⊂ Rd be a closed convex set. For any x ∈ Rd, define

PC(x) := argmin
z∈C

∥x− z∥2.

We call PC : Rd → C the projection operator onto C.

We show that PC is well-defined. Pick any element w ∈ C and let r := ∥w − x∥2. If
r = 0, then PC(x) must be w. Otherwise, let Br(x) := {z ∈ Rd : ∥z − x∥2 ≤ r}. Then,
minimizing g(z) := ∥z − x∥2 over C is equivalent to minimizing g over C ∩Br(x), namely,

min
z∈C
∥z − x∥2 = min

z∈C∩Br(x)
∥z − x∥2.

Since C ∩Br(x) is compact and g is continuous, g admits a minimizer on C ∩Br(x), which
must be a minimizer of g on C. This shows the existence of minimizers of g on C. We show
that there can be only one minimizer. Suppose z1, z2 ∈ C are minimizers of g on C, namely,

∥z1 − x∥2 = ∥z2 − x∥2 = min
z∈C
∥z − x∥2 =: δ.

Then, by the parallelogram law,

∥z1 − z2∥22
4

=
∥z1 − x∥22 + ∥z2 − x∥22

2
−
∥∥z1 + z2

2
− x

∥∥2

2
= δ2 −

∥∥z1 + z2
2

− x
∥∥2

2
≤ 0,

where the last inequality follows as z1+z2
2
∈ C. Hence, z1 = z2, which shows the uniqueness

of the minimizer.

Lemma 4. Let C ⊂ Rd be a closed convex set. Then, for any x ∈ Rd,

⟨PC(x)− x, z − PC(x)⟩ ≥ 0 ∀z ∈ C.

Proof. Let f(z) = 1
2
∥z − x∥22 for any z ∈ Rd. Now, fix z ∈ C. For t ∈ [0, 1], define

h(t) = f(PC(x) + t(z − PC(x))). Then, by definition, h(t) ≥ h(0) for all t ∈ [0, 1]. Hence,

0 ≤ lim
t→0

h(t)− h(0)

t
= h′(0) = ⟨PC(x)− x, z − PC(x)⟩.

12



Using the projection operator PC , one may attempt the following projected gradient
method: given an initial point x0 ∈ C, for k ≥ 0, iterate

xk+1 ← PC(xk − tk∇f(xk)) for some suitable tk > 0.

Of course, in order for the projected gradient method to be practical, the projection operator
PC should easily be computable; for instance, C is a Euclidean ball.

Using Lemma 4, we can verify that the projected gradient method is a descent method
provided t ≤ 2

L
. To this end, use Lemma 1 to derive

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22.

Since

t∇f(xk) = xk − (xk − t∇f(xk)) = (xk − xk+1) + (xk+1 − (xk − t∇f(xk))), (9)

we have

⟨∇f(xk), xk+1 − xk⟩ = −
∥xk+1 − xk∥22

t
+
⟨(xk+1 − t∇f(xk), xk+1 − xk)⟩

t

≤ −∥xk+1 − xk∥22
t

,

where the inequality follows from Lemma 4. Therefore,

f(xk+1)− f(xk) ≤ −
(
1

t
− L

2

)
∥xk+1 − xk∥22, (10)

which verifies that the gradient method is a descent method provided t ≤ 2
L
.

Proposition 4. Suppose f : Rd → R is convex and L-smooth on a closed convex set C ⊂ Rd;
also, assume f ∗ := infx∈C f(x) = f(x∗) for some x∗ ∈ C. Then, the projected gradient
method with constant step size t ∈ (0, 1/L] yields

f(xN)− f ∗ ≤ ∥x0 − x∗∥22
2tN

.

Proof. Using L-smoothness (Lemma 1) and convexity,

f(xk+1)− f ∗ = f(xk+1)− f(xk) + f(xk)− f ∗

≤ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22 + ⟨∇f(xk), xk − x∗⟩

= ⟨∇f(xk), xk+1 − x∗⟩+ L

2
∥xk+1 − xk∥22.

Using (9), we have

⟨∇f(xk), xk+1 − x∗⟩ = ⟨xk − xk+1, xk+1 − x∗⟩+ ⟨xk+1 − (xk − t∇f(xk)), xk+1 − x∗⟩
t

≤ ⟨xk − xk+1, xk+1 − x∗⟩
t

,

(11)
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where the inequality is due to Lemma 4 (recall that x∗ ∈ C). Therefore, we have

f(xk+1)− f ∗ ≤ ⟨xk − xk+1, xk+1 − x∗⟩
t

+
L

2
∥xk+1 − xk∥22. (12)

Using t ≤ 1
L
, we have

f(xk+1)− f ∗ ≤ 2⟨xk − xk+1, xk+1 − x∗⟩+ ∥xk+1 − xk∥22
2t

=
∥xk − x∗∥22 − ∥xk+1 − x∗∥22

2t
,

(13)

where the last equality uses 2⟨a, b⟩+ ∥a∥22 = ∥a+ b∥22 − ∥b∥22. Therefore,

f(xN)− f ∗ ≤ 1

N

N−1∑
k=0

(f(xk+1)− f ∗) ≤ ∥x0 − x∗∥22
2tN

.

Remark 10. The implication of Proposition 4 is that the projected gradient method yields
the result essentially the same as the unconstrained case (cf. Proposition 2) as long as the
L-smoothness and convexity are satisfied on the closed convex set C. Though the projected
gradient method is as good as the gradient method for the unconstrained case in theory, one
should keep in mind that the projected gradient method is practical only when PC is easily
computable.

Remark 11. The previous results (10) and (12) follow from the following general result: for
any z ∈ C,

f(xk+1) ≤ f(z) +
⟨xk − xk+1, xk+1 − z⟩

t
+

L

2
∥xk+1 − xk∥22. (14)

Clearly, one can derive (10) by letting z = xk. To derive (12), let z = x∗ and use the last
two equalities of (11). To derive (14), observe that

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22

≤ f(z) + ⟨∇f(xk), xk − z⟩+ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22

= f(z) + ⟨∇f(xk), xk+1 − z⟩+ L

2
∥xk+1 − xk∥22,

where the inequalities are due to L-smoothness and convexity. Hence, to derive (14), it
suffices to show

⟨∇f(xk), xk+1 − z⟩ ≤ ⟨xk − xk+1, xk+1 − z⟩
t

. (15)

One can prove (15) by means of Lemma 4; simply mimic (11) with z instead of x∗.

Remark 12. As in Remark 9, note that (13) implies that the distance from xk to the set
of all minimizers Optf := {x ∈ C : f(x) = f ∗} must decrease; in other words, the distance
infx∈Optf ∥xk − x∥2 decreases.
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Proposition 5. Suppose f : Rd → R is µ-strongly convex and L-smooth on a closed convex
set C ⊂ Rd; also, assume f ∗ := infx∈C f(x) = f(x∗) for some x∗ ∈ C so that x∗ is the
unique minimizer of f on C. Then, the projected gradient method with constant step size
t ∈ (0, 1/L] yields

∥xN − x∗∥22 ≤ (1− µt)N∥x0 − x∗∥22
and

f(xN)− f ∗ ≤ (1− µt)N

2t
∥x0 − x∗∥22.

Proof. Using L-smoothness (Lemma 1) and µ-strong convexity,

f(xk+1)− f ∗ = f(xk+1)− f(xk) + f(xk)− f ∗

≤ ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22 + ⟨∇f(xk), xk − x∗⟩ − µ

2
∥xk − x∗∥22

= ⟨∇f(xk), xk+1 − x∗⟩+ L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22.

Using (11) (or (15)), for t ≤ 1
L
, we have

f(xk+1)− f ∗ ≤ ⟨xk − xk+1, xk+1 − x∗⟩
t

+
L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22

≤ 2⟨xk − xk+1, xk+1 − x∗⟩+ ∥xk+1 − xk∥22
2t

− µ

2
∥xk − x∗∥22

=
∥xk − x∗∥22 − ∥xk+1 − x∗∥22

2t
− µ

2
∥xk − x∗∥22,

where the last equality uses 2⟨a, b⟩+ ∥a∥22 = ∥a+ b∥22 − ∥b∥22. As f(xk+1) ≥ f ∗, we have

∥xk+1 − x∗∥22 ≤ (1− µt)∥xk − x∗∥22.

Therefore,
∥xN − x∗∥22 ≤ (1− µt)N∥x0 − x∗∥22

and

f(xN)− f ∗ ≤ (1− µt)∥xN−1 − x∗∥22 − ∥xN − x∗∥22
2t

≤ (1− µt)N

2t
∥x0 − x∗∥22.

Beyond Euclidean projection Though the projection operator PC is well-defined for any
closed convex set C ⊂ Rd, it may not admit a simple closed form in general; e.g., consider
C = ∆d or C = [0, 1]d. To tackle this issue, one may use the Bregman projection based on
the Bregman divergence which serves as a non-Euclidean distance. Or, if solving a linear
problem over C is easy, one may use the Frank-Wolfe algorithm.
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