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Preface Due to its wide range of applications in various fields, optimal transport has at-
tracted much attention from multiple disciplines. Thanks to this, the boundary of optimal
transport theory is continuously expanding, leading to a variety of perspectives and ap-
proaches. Those who wish to learn the theory of optimal transport for the first time are

recommended to consult the following excellent textbooks.
e [Vil03] Topics in Optimal Transportation (2003)

e [AGS05] Gradient Flows: In Metric Spaces and in the Space of Probability Measures
(2005)

[Vil09] Optimal Transport: Old and New (2009)

[San15] Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling (2015)

[ABS21] Lectures on Optimal Transport (2021)

[FG21] An Invitation to Optimal Transport, Wasserstein Distances, and Gradient
Flows (2021)

Depending on the reader’s background and interest, preferences may vary. In any case,
however, optimal transport theory is a vast and deep subject that requires a solid foundation
in mathematical analysis. The goal of this note is to provide a concise and rigorous summary
of the essential results in optimal transport theory which I believe are foundational for further
study. The target audience is expected to be familiar with measure theory, topology, and
convex analysis. Although applied researchers may be interested in more practical aspects
of optimal transport, it would be beneficial to try—at least once—to understand the core

mathematical foundations.



Notation and Preliminaries

General notation Forn € N, define [n] = {1,...,n} and let Perm(n) denote the collection
of all permutations of [n]. For a,b € [—o0, 0], let a V b = max(a,b) and a A b = min(a, b).

For a map T: X — ) between any sets X and ), let graph(T') denote its graph, i.e.,
graph(T) = {(z,T(z)) ;2 € X} C X x ).

Any function taking values in [—00, 0o] is said to be proper if it is not identically oo or —co.

Measure and integration Let (X, A, 1) be a measure space. We say p is concentrated
on A€ Aif u(X\A) = 0. For any measurable function f: X — [—o0, o],

/deﬂ_/Xerdu—/deu if/Xerdu<ooor/deu<oo,

where f* = fVvO0and f~ = (=f) V0. We write f € L'(u) if [, |fldp < oo. Let 4,
denote the Dirac measure concentrated at x € X, i.e., 0,(A) =1if x € A, and 6,(A) = 0 if
x ¢ A. Lastly, we call p a probability measure if u(X) = 1; in this case, we call (X, A, u) a
probability space.

Pushforward measure Let (X, A, 1) be a measure space and let (), B) be a measurable
space. Given a measurable map 7: X — Y, let Tz denote the pushforward measure of
by T, namely, Ty is a measure on (), B) such that

Tuu(B)=puf{r e X : T(x) € B} VBeB.

In this case, for any measurable f: ) — [0, 0o,

/Xfon;L:/yfdu.

Topology A topological space is said to be separable if it has a countable dense subset.
The product of two separable spaces is separable. A topological space is said to be metrizable
if there is a metric that generates the topology; we call such a metric a compatible metric.
We call a metrizable topological space simply a metrizable space. A topological space is
called a Polish space if it is separable and metrizable by a complete metric. The product of
two Polish spaces is a Polish space. A subset of a Polish space is a Polish space if and only
if it is a G set; see [Coh13]. For a topological space X, let C'(X) denote the collection of all
real-valued continuous functions on X, and let C,(X) denote the collection of all bounded
real-valued continuous functions on X. For a metrizable space X and its compatible metric
p, let BL(X, p) denote the collection of all bounded Lipschitz functions on X'.
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Topology and measures For a topological space X, let Z(X) denote the Borel o-algebra
on X, and let &(X) denote the collection of all Borel probability measures on X, i.e.,
probability measures defined on (X, #(X)).

Support of a measure Let X be a topological space. The support of p € P (X) is
defined by
supp(u) = {x € X : p(U) > 0 Vopen neighborhood U of z}.

By definition, the support of u € £ (X) satisfies

X\supp(u) = |J G & supp(p)= () F

G is open F is closed

1(G)=0 p(F)=1
Hence, supp(u) is a closed set. If X' is second-countable, e.g., X is separable and metrizable,
continuity of measures ensures p(supp(u)) = 1, which implies that supp(u) is the smallest
closed set having the total mass 1; equivalently, X'\supp(u) is the largest open set having

Zero mass.

Euclidean spaces A Euclidean space is always equipped with the standard topology and
its subset is equipped with the relative topology inherits from that. For d € N, let m4 denote
the Lebesgue measure on the Borel o-algebra on RY; the symbol dmg(z) of integration is
simply denoted as dz. For d = 1, let A denote the restriction of m; to the unit interval [0, 1]
so that A € 2([0, 1]).
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1 Theoretical Foundations of Optimal Transport

Optimal transport theory concerns how to transport one probability measure to another with
minimal cost. We introduce two notions of transport—transport maps and plans—and the
corresponding notions of cost. These notions lead to two optimal transport problems, the
Monge problem and the Kantorovich problem, which consist in finding transport maps and
plans incurring the smallest cost, respectively. We show that the latter is a relaxed version
of the former and highlight important aspects of their connections. Moreover, we provide a
probabilistic interpretation of transport, which is useful for understanding intricate measure-
theoretic formulations. Lastly, we introduce two essential tools in optimal transport theory

called disintegration and gluing techniques, which will be used in the subsequent sections.

Settings Throughout this section, (X, A, u) and (Y, B, v) denote probability spaces unless

otherwise stated.

1.1 Transport maps and the Monge problem

We first study a notion of transport induced by a map. Recall that any measurable map
T: X — Y induces a probability measure Txp on (Y, B), which we call the pushforward
measure of p by T'. Roughly speaking, the pushforward measure is obtained by transporting
mass consisting of u via T. As a simple example, let X =Y = R? A = B = $(R?), and
p= 3" 06, Then, Typ =L 5" 67, which amounts to transporting the mass - at
each location x; to another site T'(x;) on the plane. In summary, a map gives rise to a notion
of transport via pushforward measures. Using this, we define a transport map between two

probability measures as follows.

Definition 1.1. A measurable map T: X — ) is called a transport map from p to v if
Typ = v. The collection of all transport maps from yu to v is denoted as T (p, v).

Next, we define a notion of cost associated with transport maps. Recall from the afore-
mentioned example with pu = % > i, 0z, on the plane, that a map T transports the mass %
at location x; to T'(x;). We may price such transport by defining a unit cost, say the distance
|#;—T'(2;)]|2, and multiplying it by the mass 1 then, the total cost is = ™" | ||a; — T'(x;)]]2.
To apply this idea to the abstract setting, we view the unit cost incurred by = +— T'(z) as
any quantity depending on the source location x and the destination T'(z) of the transport.
For this reason, we consider a function ¢ define on X x ) and define the unit cost associated
with x — T'(x) as c¢(z, T(x)).



Definition 1.2. We call ¢: X x Y — (—00, 00| a cost function if it is bounded below and
measurable with respect to the product o-algebra A ® B.!

Given a cost function ¢, by integrating the unit cost with respect to the source measure

1, we obtain the total transport cost incurred by a map T as follows:

cost(T) = /X o(z, T(x)) d(x).

The optimal transport problem consists in finding a transport map that achieves the smallest
transport cost, i.e., minimizing cost(7") over T" € T (u,v). This problem is attributed to
Gaspard Monge who considered such a formulation to find the most economical way to

transport the soil from the ground to several construction sites [Mon81].

Definition 1.3 (Monge Problem). Given a cost function ¢, suppose we associate each

transport map 1" € T (p, v) with the cost

/X o, T(x)) du(x).

The Monge problem seeks a transport map incurring the smallest cost; any element in

arg min /X o, T(x)) du()

TeT (u,v)

is called an optimal transport map. The optimal transport cost of the Monge problem is

M) = inf /X o, T(x)) du(z) € (—o00, 00].

From a purely mathematical perspective, the Monge problem is simply a minimization
of some function over 7 (i, ) and the so-called ‘optimality’ is used to refer to the minima.

Depending on the situation, such optimality may be related to a desirable property.

Example 1.1. Suppose X =Y = [0,1] and A= B = #4([0,1]). Let u = v be the Lebesgue
measure on [0, 1]. Clearly, the identity map Id from [0, 1] to [0, 1] is a transport map from p to
v. In fact, there are many other transport maps that are highly nontrivial and complicated.
For instance, define T": [0,1] — [0,1] as T'(x) = |2z — 1|, let T} = T', and recursively define
Twi1 =ToT, forn € N. Then, T,, € T(p,v) for every n € N. Also, for each n € N, define
Sn: [0,1] — [0, 1] as follows:

(x—%) + (1—2%) S (%,zﬁn) for k=1,...,2",

11—z e {0,5%,..., 521},

Sp(x) =

"We require ¢ to be bounded below to prevent any integrability issues.



Then, one can verify that (5,)xp = v holds; hence, S, € T(u,v) for all n € N. Now, let
c(x,y) = |x — y|. Then, the identity map Id incurs the zero transport cost, whereas 7}, and
S, incur the positive transport cost. In other words, Id is an optimal transport map, while
T, and S,, are not. As such, solving the Monge problem leads to the most intuitive transport

map Id between two probability measures.

(b

n
N

Figure 1: T, and Sy of Example 1.1.

Last but not least, we mention that the Monge problem may be infeasible, that is,
T (p,v) = 0. In other words, there is no transport map between p and v. In this case, by

convention, we often say the optimal transport cost of the Monge problem is oo.

Example 1.2. Suppose 1 = &, and v = 1(d,, +0,,) for some z € X and y1,y» € Y, assuming
{z} € Aand {y1},{y2} € B. For any measurable map T: X — Y, the pushforward measure
Typt = 67(z is supported on a singleton {7'(x)}, while the support of v consists of two points.
Hence, Ty # v for any T

1.2 Transport plans and the Kantorovich problem

As shown in Example 1.2, transport maps cannot split mass; if © = d,, the total mass 1
at x € X is transported to T'(z), resulting in the pushforward measure Ty = dr(,) that
also has the total mass placed at one site T'(x). This is because a map 7" always maps each
location x € X to one location T'(x) € ), thereby prohibiting mass at x from splitting into
multiple destinations.

We introduce a notion of transport that permits multiple destinations. The key object is
a transport plan which records the amount of mass to be transported from x to y for any pair

m

(x,y) € X x Y. First, consider a simple case where yu = % Yo 0y and v = %Z?Zl oy, for
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some xq,...,Ty, € X and y1,...,y, € Y with {x1},..., {z,} € Aand {y1},...,{yn} € B.
Suppose we transport mass from p to v by specifying the amount of mass to transport from
x; to y;, say P;; > 0, for any pair (¢,j) € [m] x [n]. Then, any admissible transport plan is

represented by the following constraint on F;;’s:

;Pij = % Vi € [m] and ;Pij = % Vi € [n].
In other words, we can plan transport by simply determining a quantity (F,;) of mass to
transport from x; to y; for any pair (i,7) € [m] x [n]. Now, let us imagine m,n — oo to
generalize this concept to general 1 and v. As m,n — oo, the quantities (FP;;) become ap-
proximations of the amount of mass to transport from any x € X to any y € ). Accordingly,
we can specify the amount of total mass to transport from a local area dx € A to another
local area dy € B via a measure v on the product space (X x Y, A ® B), i.e., y(dz x dy)
denotes the total mass to transport from dz to dy. In other words, now the transport plan
is a measure recording the amount of mass to be transported from any local area dz € A to
another local area dy € B. As discussed earlier, any admissible transport plan should satisfy
some constraint; in this case, y(dz x }) is the total mass transported from a local area dz,
which must be p(dz), and similarly y(X x dy) = v(dy).

Definition 1.4. A probability measure v on the product space (X x Y, A ® B) is called a

transport plan from u to v if
YAxY)=u(A) VA€ A and ~(X x B)=v(B) VBeB.
The collection of all transport plans from u to v is denoted as II(p, v).

Definition 1.5 (Kantorovich Problem). Given a cost function ¢, suppose we associate

each transport plan v € II(u, v) with the cost

/ cdy.
XxY

The Kantorovich problem finds a transport plan incurring the smallest cost; any element in

.(u,v) := arg min/ cdy
yEll(p,v) JXXY
is called an optimal transport plan from p to v. The optimal transport cost of the Kan-

torovich problem is
K.(y,v) := inf / cdy.
Xx)Y

Y (p1,v)



Again, K.(p, v) = oo might happen. In this case, it happens if and only if the cost of every
transport plan is co. Also, notice that the Kantorovich problem is an infinite-dimensional

linear program, which generalizes the following discrete case to abstract settings.

Example 1.3. Suppose that both probability spaces are discrete, that is, X = {xy,..., 2}
and Y = {y1,...,Yn}, where A and B are their discrete o-algebras. Then, we may represent
i and v as - .
= Z a;0;, and v = Z bjdy,,

i=1 j=1
where ay, ..., ap,b1,...,b, € Ry and 377 a; = 377 bj = 1. A cost function ¢ can be
represented as a matrix by specifying all possible values, that is, C;; := c¢(x;,y;) € R. Also,
each transport plan v € II(u, v) takes the following form:

Y= Pl

i=1 j=1

where P;; € Ry and
ZPU = a; and ZPZ]:b]
j=1 i=1

In this case, y incurs the cost Y ", Z?:l CijP;j. Accordingly, we may write the Kantorovich
problem as follows:
minimize (C,P)

(1.1)
subject to P € RT*" P1, = a, P'1,, =b,

where a = (ay,...,a,)" € RT and b = (by,...,b,)" € R?, and C = (Cj;) € R™*". In other
words, the Kantorovich problem between discrete probability spaces is a linear program;
the variable P is a matrix, the objective function is linear in P, and the constraint set is a

convex polytope, an intersection of a hyperspace P € RT"*" and two hyperplanes P1,, = a
and P'1,, = b.

1.3 Connections between the two optimal transport problems

We prove that the Kantorovich problem is a relaxed version of the Monge problem. The idea
is that any transport map 7" induces a transport plan (Id,7")xu, and they incur the same

transport cost given any cost function c.

Lemma 1.1. ForanyT: X — Y, let (Id,T): X — X x Y denote a function that maps each
x € X to (x,T(x)). If T: X — Y is measurable, so is (Id,T).



Proof. Fix a measurable map T: X — ). As A®Q B is generated by {Ax B : A € A, B € B},
it suffices to check (Id,T)"*(A x B) € A for any A € A and B € B. This is true because
measurability of 7" implies (Id, T) (A x B) = ANT *(B) € A. O

Proposition 1.1. T' € T (u, v) implies (1d,T) zp € II(p, v). Moreover, for any cost function
¢, the cost by a transport map T in the Monge problem coincides with the cost by a transport

plan (Id, T') 4 p in the Kantorovich problem. Accordingly, K.(u,v) < M.(u, v).

Proof. Fix T" € T (p,v). By Lemma 1.1, (Id,T) is measurable; hence, vp = (Id,T")xp is
well-defined. Then, vp(A x V) = u(Id"*(A)) = u(A) for any A € A and y7(X x B) =
w(T~Y(B)) = v(B) for any B € B. Hence, 7 € II(u,v). Also, for any cost function c,

| cemdirtag = [ (eo0d 1)@ dute) = [ o Tw) du(o)

XxY X

X

Consequently, for any T € T (i, v),

[ e t@)dut) = [ oozt e dion) = Kur)

XY YEI(p,v)

Therefore, we have K. (i, v) < M. (u, v). O

Note that we can rewrite the Monge problem as

inf / cdy,
el (1Y) J x xy

where II7-(p, v) = {(Id, T) gzpo : T € T (11, v)} is a subset of II(, v) by Proposition 1.1. Hence,
both Monge and Kantorovich problems are minimization of the objective function

s cdy,
X xY

where the only difference is that the Kantorovich problem minimizes it over a constraint set
II(, v), which is larger than that of the Monge problem, that is, II7(u, v). In other words,
we may view the Kantorovich problem as a relaxed version of the Monge problem obtained
by relaxing the constraint IT7(u, v) to II(u, v).

We will later see that optimal transport plans exists, i.e., given a cost function ¢, under

mild assumptions, we can find v* € II(y, v) such that
Ve argmin/ cdy & K(p,v)= / cdy”.
~ell(p,v) J X XY xXxY

From the aforementioned connection between the Monge and the Kantorovich problems, we
can deduce that M, (u, v) = K.(u, v) if v* € I (u, v), or equivalently, there is T* € T (p, v)
such that v* = (Id, T*) zu. In other words, both problems have the same optimal cost and T*

is an optimal transport map. The following proposition summarizes this simple observation.
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Proposition 1.2. If v* is an optimal transport plan such that v* = (Id, T*)xp for some
transport map T* € T (u,v), we have M.(u,v) = K.(u,v) and T* is an optimal transport
map.

To utilize Proposition 1.2, we need to verify whether an optimal transport plan is in-

duced by a transport map. As stated below, this depends on whether a transport plan is

concentrated on the graph of some map.
Proposition 1.3. Suppose graph(T') € A® B for any measurable T: X — ).

(1) For any T € T (u,v), the induced transport plan ~yr = (Id, T)gp is concentrated on
the graph of T, i.e., yr(graph(7T)) = 1.

(ii) If v € II(p, v) is concentrated on graph(T') for some measurable map T: X — Y, then
v=(Id,T)gp and T € T (u,v).
Proof. (i) Note that (Id, T)"!(graph(7T)) = X; hence, yr(graph(T)) = u(X) = 1.
(ii) For any A € A and B € B, note that

(A x B)Ngraph(T) = {(z,T(z)) : v € A,T(z) € B} = (ANT ' (B)) x ¥) N graph(T).
Hence,
(A X B) =~((AxB)N graph(T)) (- v(graph(T)) = 1)
=7 (((ANT(B)) x ¥) N graph(T))
=7 ((AnT" ( ) xY) (. y(graph(T)) = 1)
=pwANTY(B)) (.7 €M(u))
= (Id,T) 4 1(A x B).

Therefore, we conclude v = (Id, T")4p by the A theorem. The marginal of v = (Id, T") x4
on Y is Typ, which should be v by definition. O

In summary, v € II(p, v) belongs to Hr(u,v) = {(Id, T)pp : T € T(p,v)} if and only
if v is concentrated on the graph of some measurable map. Lastly, we note that (ii) of
Proposition 1.3 implies the following: for any measurable map 7: X — ), there can be
only one transport plan concentrated on graph(7"), which is (Id,T")xu. This will later play
a crucial role in proving uniqueness of optimal transport plans, which is also related to

uniqueness of optimal transport maps; see Proposition 1.8.

Remark 1.1 (Measurability of Graphs). In Proposition 1.3, note that we have assumed
measurability of graph(T"). Without any conditions on (X, .A) and (Y, B), there might exists
a measurable map T: X — ) such that graph(T) ¢ A® B. If X and ) are separable
metrizable spaces equipped with their Borel o-algebras, graph(T') is always measurable if T

is measurable; see Proposition 1.7.
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1.4 Probabilistic interpretation of transport

As we have seen in the previous sections, optimal transport problems are formulated and
handled by measure theory. However, purely measure-theoretic thinking is often difficult to
follow. It turns out that we can alleviate such a difficulty by understanding optimal transport
problems via probability theory. To this end, we introduce a probabilistic interpretation of
optimal transport problems.

Transport plans are closely related to the coupling in probability theory. Coupling refers
to constructing two random variables X and Y on some probability space such that the laws
of X and Y are u and v, respectively; the joint law of (X, Y) is also referred to as a coupling
of (u,v). Hence, couplings of (u, ) are exactly transport plans from u to v. Accordingly,
we can rewrite the Kantorovich problem as follows:

)1(2& Ec(X,Y),

Yov
where X ~ pand Y ~ v stand for constructing X-valued random variable X whose law is
and Y-valued random variable Y whose law is v, respectively, and [E denotes the expectation
with respect to X and Y.

Proposition 1.4. Define a map (Id,1d): X — X x X by mapping each v € X to (z,x) €
X x X. Then, (1d,1d) is measurable, and (1d,1d)xu belongs to II(u, p).

Remark 1.2. A probabilistic interpretation of Proposition 1.4 is as follows: if there is a
X-valued random variable X whose law is y, the law of a (X x X')-valued random variable

(X, X) is simply (Id,Id)xpu. Clearly, the law of (X, X) is marginally p and thus belongs to
II(p, o).

Meanwhile, a coupling of (i, ) is said to be deterministic if there exists a measurable
map 7: X — Y such that T(X) and Y have the same law. Hence, such a map is exactly a
transport map from p to v. Therefore, we can rewrite the Monge problem as follows:

inf Ec(X,T(X)),

Xrop
T(X)~v

where T'(X) ~ v means that the law of T'(X) is v.

We apply such an interpretation to the case where (X, A) = (V,B) = (R, Z(R)), i.e.,
w,v € Z(R). Tt turns out that we can always find a transport map from A € Z([0,1])—
the Lebesgue measure restricted on [0, 1]—to any member of Z(R). In the language of
probability theory, this is represented as F)- YU) ~ u, where U is the uniform random
variable on [0, 1] and F;! is the quantile function of 4 € &?(u). This is also known as the
inverse transform sampling, implying that we can sample from g by transforming samples

from the uniform distribution on [0, 1].
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Lemma 1.2. For any p € Z(R), let F,: R — [0,1] denote its distribution function, i.e.,
F,(z) = p(—o0,z|. Also, let F,;lz (0,1) — R denotes its quantile function, i.e.,

F, Y u) = inf{z e R: F,(z) > u}. (1.2)

For simplicity, we always let F,;'(0) = F'(1) =0 so that F;': [0,1] = R.?

(i) F, ' (u) <z if and only if u < Fj(z) for any u € (0,1) and x € R.

(i) (F)ah = o
(1i1) If F,, is continuous, (F,)up = .
Proof. (i) Fix u € (0,1) and z € R. Then, u < F,(z) implies F;'(u) < x by definition. Con-

versely, assume F,'(u) < x. By definition, we can find a sequence (2, )nen in R converging

to F,*(u) such that u < F,(z,) for all n € N. As F}, is nondecreasing and right-continuous,

u< lim F(x,) = F,(F; " (u)) < F,(x).

n—oo K

11) It suflices to prove (£, —00,T| = x) for all x € R. By definition,
ii) I fh Ful#/\ F, f 1l R. By definiti

(F7 YA (—00, 2] = Mu € 10,1] : Fl(u) <z} =Mue(0,1): F N (u) < a}.

I

Due to (i),

(F)eA(—00,2] = Mu € (0,1) : u < Fu(2)} = A0, Fu(2)] = Fy(a).

n
(iii) It suffices to prove (F},)4xu(0,u] = u for all w € (0,1). By definition,
(F)#(0,u] = pz € R : Fy(o) < u).
As F), is continuous, {z € R: F,(z) < u} = (—o0, z,], where
z, =sup{z € R: F,(z) = u}.

Continuity of F}, implies F),(x,) = w; hence, (F},)xn(0,u] = p(—o00, z,] = F,(x,) = u. In (ii)

and (iii), measurability of F}, and F}; l'is implied by their monotonicity. ]
Proposition 1.5. Let X =Y = R and A = B = B(R); accordingly, pu,v € P (R) and
I(u,v) C P(R?).> For any v € P(R?), let F,: R* — [0,1] denote its distribution function,
i.e., F(z,y) = v((—o0,x] X (—o0,y]).

2As the values of F N 1'at 0 and 1 are inconsequential, we set them arbitrarily to extend its domain to
[0, 1] without changing its range R.

3By definition, transport plans are probability measures on (R?, Z(R)®%(R)); as Z(R)@ B(R) = B(R?),
transport plans are indeed Borel probability measures on R2.
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(1) v € W(u,v) if and only if

Fu(@) + Fy(y) — 1 < F(a,y) < min{F,(2), F,(y)} V(o) R (13)

(it) v = (F; ', Fy )X if and only if Fy(x,y) = min{F,(x), F,(y)} for all (z,y) € R*.
(ii) If F, is continuous, F,;* o F,, is a transport map from p to v and

(F L E D ad= (1A, F o Fy)ap.

Proof. (i) Assume v € II(p, v). Since (—o0, x] X (—00,y] = ((—00,z] x R) N (R x (—o0,y]),

Fy(,4) = 7(~00,2) X B) + (R x (~00,5]) — 7(((~00,2] x B) U (R x (~00, )
> (=00, 2] X R) + (R x (=00, y]) — 1
=Fu(z)+ F(y) — 1.
Also, F,(z,y) < min{y((—oo,z] x R),7(R x (—00,y])} = min{F,(z), F,(y)}. Conversely,
suppose 7 satisfies (1.3). Letting y — oo shows vy((—o0,z] x R) = p(—o0, z] for all z € R;
similarly, y(R x (—o0,y]) = v(—o0,y] for all y € R. Hence, v € II(u, v).

(ii) Since a Borel probability measure is completely determined by its distribution function,
it suffices to prove the “only if” part. For v = (F ', F,/')4A, as in the proof of Lemma 1.2,

Fo(z,y) = (F, ', F; ) g M((—00, 2] x (—00,y])
=Mue[0,1]: F,'(u) <z and F, ' (u) <y}
=Mue(0,1): F, Y(u) <z and F, ' (u) < y}
= Mu € (0,1) : uw < min{F},(2), y(y)}}
= min{F),(z), F,(y)}.

(iii) Due to Lemma 1.2, (F, ' o F,)upu = ((F, V) ¢ (F,)gp) = (F, 1) A = v. Similarly,
(FLE D= (B F D (B)gp) = (B o By F o By,
By Lemma 1.6, it suffices to show u{z € R: F,/' o Fj,(x) # x} = 0. One can verify that
{xER:FJloFM(x) #x} C{reR: F,(z) € D},

where D is the set of points of discontinuity of F , which is countable as F is monotone.

Hence,
p{z eR:F* #£x} <Y pfr €R: Fy(r) =d} =0,
deD
where pu{x € R: F,(z) = d} = 0 holds for any d € [0, 1] as F), is continuous. O
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1.5 Disintegration and gluing

We introduce two important techniques for analyzing transport plans: disintegration and
gluing. Disintegration is a method for decomposing a probability measure on the product
space (X x Y, A® B) along with its marginal. More precisely, any probability measure
on (X x Y, A® B) can be decomposed along with the values in X', namely, for each x € X,
we can find a probability measure ~y, on (Y, B) such that 7,(B) = v(dz x B), meaning that
72(B) is roughly y({z} x B) for every B € B. In this case, 7y can be represented as an
integration of x +— v, with respect to the marginal of v on X. Such a result is known as
disintegration theorem which holds if ) is a Polish space and B = #()).

Theorem 1.1 (Disintegration). Let Y be a Polish space and B = %()). For any proba-
bility measure v on (X x Y, A® B) that is marginally p on X, there exists a p-almost unique
collection {7, : x € X'} of Borel probability measures on Y such that a function x +— ~,(B)

1s measurable for any B € B and

7(5)2//1{(z,y)65} dv.(y)du(z) VS e A® B.
xJy

More generally, for any measurable function h: X x Y — [0, 00],

Jo = [, f e dwane)

Remark 1.3. In Theorem 1.1, we call {7, : x € X} a collection of conditional probability
measures of v with respect to its marginal p on X'; also, p-almost uniqueness means that
if there are two such collections {7, : * € X} and {7, : © € X'} of conditional probability
measures of v, there must exist A € A such that u(A) = 1 and v, = 9., i.e., they are the

same probability measure on ), for all x € A.

Remark 1.4. In the setting of Theorem 1.1, suppose T: X — ) is a transport map from
i to v and let v be the transport plan induced by T (recall Proposition 1.1). Then, one can

verify that vy, = d7(,) since for any measurable function h: X x Y — [0, 00],

Jo 0= J e 1@ 00) = [ [ 01 b )0

Disintegration theorem is a measure-theoretic version of the regular conditional distri-
bution. Let X and Y be X-valued and Y-valued random variables, respectively. Letting ~y
be the joint law of (X,Y’), Theorem 1.1 is essentially the same as obtaining the following
conditional distribution: for each z € X, find a probability measure on (), 3) given by

B—PYeB|X=x)=(B) VBeB
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such that

EWX,Y)=E /y h(X, y) dyx(y),

where 7y represents a &?())-valued random variable, i.e., a random probability measure.
In summary, a conditional probability measure 7, of Theorem 1.1 is exactly the regular
conditional distribution of Y given X = z. See Chapter IV of [C11] and Chapter 5 of

[Kal97] for comprehensive treatment on the regular condition distribution.

Lemma 1.3 (Gluing). Let (X, Ay, 11), (Xs, Ag, 12), and (X5, As, us) be probability spaces,
where Xy and X3 are Polish spaces, Ay = B(X1), and A3 = B(X3). For vyi9 € (1, po) and
Yoz € (g, p3), there exists a probability measure T' on (X x Xy X X3, A1 @ Ay ® A3) such
that (Pi2) ' = y12 and (Pag) 4l = o3, where Pyj(z1, x2, x3) = (x;,x;) for all i,5 € {1,2,3}
such that i # j and all (x1,xe,23) € X1 X Xy X As.

Proof. By Theorem 1.1, we can find two collections {%%) :x9 € Ao} and {%(g?;) : X9 € Xp} of

Borel probability measures on &} and A3, respectively, such that
Y12(S12) = / / Ii(21,20)€512) d’)é?(ﬂfl)dlug(l’g) VS12 € A1 ® Aj,
Xo J Xy
Yo3(S23) = / / I{(22,25)€503) d%(gz) (z3)dpa(m2) VS € Ay @ As.
Xy J x

Define I' € L@(Xl X XQ X X3) by

I(S) = / / Lo anamesy 10 (@) dy® (25 dps () VS € Ay © Ay © Ay,
XQ X1><X3

Then, (Plg)#r = Y12 and (P23)#F = Y23; note that this also 1mphes (Plg)#r S H(/Ll, /Lg) ]

1.6 Supplementary results

We have defined transport maps and plans using set-theoretic definitions. These can always

be rewritten in terms of integration.

Lemma 1.4. Let (X, A, n) and (Y,B,v) be two measure spaces. For a measurable map
T: X — )Y, the following are equivalent.

(1) Typ = v.

(i) For any measurable function ¢ : Y — [0, 00],
/wdl/: / Yo T dpu.
y X
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(71i) For any measurable function 1p: Y — [—00, 0] such that fy¢du 15 well-defined,

/yiﬂdyz/xond,u.

We can rewrite the marginal constraints in terms of integration.

Lemma 1.5. The following are equivalent.

(1) v €y, v).

(ii) For any measurable functions ¢: X — [0,00]| and ¢: Y — [0, o0],

| et = [ e ad [ ow b = [ @)

xxy X XxY y

(iii) For any measurable functions ¢: X — [—o00,00| and ¢: Y — [—00,00| such that
[ wdp and [, dv are well-defined,

| ey = [ s@ane) ad [ vy = [ vl ).
XxY X XxY y

Proposition 1.6. Let 1 = 0,, and v = 0, for some xy € X and yo € Y. Suppose {xo} € A
and {yo} € B. Then, I1(11,v) = {(z0,y0) }-

Proposition 1.7. Suppose {(y,y) : y € Y} € B® B. Then, graph(T) € A® B for any
measurable T: X — Y. Also, {x € X : Ti(z) = Ta(z)} € A for any measurable maps
Tv: X —=YandTy: X — Y.

Proof. Fix a measurable map T: X — Y and let f7: X x Y — ) x Y be a map such that
fr(z,y) = (T'(x),y) for all (z,y) € X x Y. We verify measurability of fr. As B® B is
generated by {B; x By : By, By € B}, it suffices to check fr'(B; x By) € A® B. This is
true because measurability of T implies f' (B x By) = T~Y(B;) x By € A® B. Therefore,
letting A = {(y,y) : y € Y} € B® B, we have graph(T) = f'(A) € A® B. Lastly, for
measurable maps 77 and 75, notice that

{rx € X : T\(x) = Ty(x)} = (Id, Ty) ' (graph(71) N graph(Ty)) € A.
[

Remark 1.5. The assumption {(y,y) : y € Y} € B® B of Proposition 1.7 is satisfied if
Y is a separable metrizable space and B = %()), i.e., its Borel o-algebra. To see this,
verify that {(y,y) : y € Y} is a closed set in Y x ) using metrizability, which guarantees
{(y,y) :ye Y} e B(Y xY). Lastly, B(Y x V) = B(Y) @ B(Y) due to separability.
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Lemma 1.6. Suppoes that two measurable maps T1: X — Y and Ty: X — Y coincide
p-almost everywhere, that is, p{x € X : Ty(z) # To(x)} = 0. Then, (T1)up = (Ts)pp.

Proof. Let A= {x € X : T\(x) # Tx(z)} (measurable by assumption). For B € B,

plr e X : To(x) € B =pu{x € A: Ty(z) € B} + p{z € X\A : Tx(x) € B}
={r € X\A:Ti(x) € B}
< u{x € X : Ti(z) € B},

hence (T5) zp(B) < (T1)pp(B). By symmetry, (T%)xp(B) > (T1) 2 p(B). O

The converse of Lemma 1.6 is not true in general, i.e., (71)zp = (T2)xpn does not imply
Ty = T,. Instead, the following holds.

Lemma 1.7. Suppose graph(T) € ARB for any measurable T: X — Y. For two measurable
maps Ty : X — Y and Ty: X — Y, suppose (1d,T1) gpn = (Id, T5) gpo. Then, Ty: X — Y and
Ty: X — Y coincide p-almost everywhere.

Proof. Let v = (Id,T1)xp = (Id,T5)xp, G1 = graph(7y), and Gy = graph(73). Then,
v(G1) = v(Gs) = 1, which is true because X = (Id,T}) ' (G;) = (Id, T) "' (Gs); this does
not need v € I(u,v). Accordingly, v(G; NGs) = 1. Also, as G1 NGy € AR B,

(Id, 7)) M (G1NGy) ={z € X : Ti(z) = Tr(z)} € A
Therefore,
p{r € X : Ty(x) = To(z)} = u((Id, T1) (G N Gy)) = v(G1 N Gy) = 1.
O

In Proposition 1.2, we have seen that existence of optimal transport maps is implied by
an optimal transport plan induced by some transport map. The next proposition establishes
uniqueness of optimal transport maps. If there is a unique optimal transport plan and it is

induced by a transport map, then such a transport map is also pu-almost everywhere unique.

Proposition 1.8. Suppose graph(T') € A® B for any measurable T: X — Y. Suppose v* is
the unique optimal transport plan and is induced by some T* € T (u,v), i.e., v = (Id, T*) 4 p.

Then, T* is a p-almost everywhere unique optimal transport map.

Proof. Since v = (Id,T*)4p is the unique optimal transport plan, one can verify from
Proposition 1.1 that K.(u, v) = M, (u, v), which shows that T* is an optimal transport map.
Suppose T' € T (41, v) is another optimal transport map. Then, (Id, T") 44 must be an optimal
transport plan, meaning that (Id, 7*)xp = (Id,T)xp. By Lemma 1.7, we conclude that T

and T™ coincide p-almost everywhere. O
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2 Existence of Optimal Transport Plans

We will prove that the Kantorovich problem admits a minimizer under mild conditions.
The key idea is (semi-)continuity of the objective function v — [ c¢dy and compactness of
II(u, v), which necessitates a suitable topology on II(u,v). To this end, we utilize the weak
topology on & (X x })), assuming X and ) are separable metrizable spaces.

Settings Throughout this section, X and ) are separable metrizable spaces. We always
formulate optimal transport problems between (X, (X)), 1) and (Y, B(Y),v). Accordingly,
we consider a cost function ¢: X x ) — (—o00,00], where X x ) is equipped with the
product o-algebra B(X) ® A(Y). Since X and ) are separable, so is X x ), which implies
B(X)RAB(Y) = B(X x)Y). Hence, measurability of ¢ is with respect to the Borel o-algebra
PB(X x )Y). For the same reason, Il(u,v) C (X x ), that is, transport plans are Borel
probability measures on X x ).

Remark 2.1 (On Metrizability). Though X and ) are metrizable spaces, we will usu-
ally avoid specifying metrics that metrize their topologies. The reason is that most of the

upcoming results originate from topological properties, not metric-dependent properties.

Remark 2.2 (On Separability). Separability of X and ) is not only a mild assumption,
but also an inevitable setting. The most natural/essential assumption on the cost function
is (semi)-continuity. Continuous functions, however, might not be measurable with respect
to the product g-algebra #A(X) @ H(Y) because it can be strictly smaller than the Borel
o-algebra AB(X x )), which turns out to be the smallest o-algebra on X x ) that makes all
continuous functions measurable as X x ) is metrizable; see Lemma 4.65 of [AB06]. Hence,
ensuring Z(X) R B(Y) = B(X x Y) via separability is indispensable for considering (semi)-
continuous cost functions. Also, as separability ensures II(u,v) C Z(X x )), we can study
II(p, v) by means of the weak topology Z(X x V). Without separability, we cannot say
that transport plans are Borel probability measures as they are defined over B(X) ® A(Y)
which can be strictly smaller than Z(X x ).

2.1 Weak topology

The main results of this section come from various properties of the weak topology on
P (X xY). We briefly study the weak topology on Z(Z) for a general metrizable space Z;
see Chapter 15 of [AB06], Chapter 11 of [Dud02], Section 1 of [Bil99].

In general, given a set and a family of functions defined on the set, the weak topology
generated by that family is the smallest (weakest) topology that makes all functions in that
family continuous; see Section 2.13 of [AB06]. In the case of the space of Borel probability
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measures, the weak topology means the one generated by a family of functionals associated

with bounded and continuous functions.

Definition 2.1. Let Z be a metrizable space. For each f € Cy(Z), define a functional L
on Z(Z2) as follows:

L(y) = / fdy.
z
The weak topology on Z(Z) generated by {Ls : f € Cy(Z)} is simply called the weak

topology on Z(Z). The convergence in this weak topology is called the weak convergence;

a sequence (Y, )nen in Z(Z2) is said to converge weakly to v € Z(Z2) if

n—o0

lim fdvn—/fdy Ve Cy(2). (2.1)
z z

Of course, there is an obvious reason for choosing these functionals to define the weak
topology. As stated in the following lemma, v — {L¢(v) : f € C,(2)} is injective. In other
words, {L; : f € Cy(Z)} distinguishes elements of Z(Z).

Lemma 2.1. Given a metrizable space Z, two elements v; and vo of P(2) coincide if and
only if
[ran= [ ran vrea)
z z

By definition of weak convergence, we can see that the objective function of the Kan-
torovich problem is continuous provided the cost function is continuous and bounded. In

other words, if ¢ € Cy(X x Y), for a sequence (V,)nen in I(u,v) converging weakly to
v € Uy, v),

lim cdfyn:/ cdy.
n=oo Jxxy AXY

However, the assumption ¢ € C,(X x )) is often too restrictive. Using the following lemma,

we will show that lower semi-continuity of ¢ leads to

liminf/ cdvyy, 2/ cdy,
n—oo Jxxy xXxy

which turns out to be sufficient for existence of optimal transport plans.

Lemma 2.2. For a nonnegative lower semi-continuous function f defined on a metric space
(Z,p), there exists a sequence (fn)nen of bounded Lipschitz functions on Z converging point-
wise to f such that 0 < f,, < fni1 < f for alln € N.

Proof. For each n € N, define f,(2) = inf ez (f(y) An+np(z,y)) for all z € Z. Observe
that f, is bounded and n-Lipschitz and 0 < f, < f,.1 < fforalln € N. Fix z € Z
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and prove lim, o fn(2) = f(2). Fix a € R such that a < f(z). Then, due to lower semi-
continuity of f, there exists § > 0 such that a < f(y) for all y € Z satisfying p(y, z) < 4.
For n € N such that n > a,

inf (f(y) An+np(z,y)) = inf f(y)An=a
yeEZ yeZ
p(y,2)<é p(y,2)<6

For y € Z satisfying p(y, 2) > 6, provided n > a/9,
fy) An+np(z,y) >0+nd > a.

In summary, f,(z) > a for n € N such that n > a V a/d, which means lim,,_,, f,(2) > a.
As this is true for any a € R satisfying a < f(z), we conclude that f, converges to f

pointwise. O

In other words, any lower semi-continuous that is bounded below is represented as a

pointwise limit of a nondecreasing sequence of bounded Lipschitz functions.

Proposition 2.1. Given a metric space Z, suppose that a sequence (V,)nen in P(Z) con-

verges weakly to v € P(Z). Then, for any lower semi-continuous f that is bounded below,

/ fdy < liminf/ fdvyn.
z n—o0 z

Proof. Without loss of generality, assume f > 0. By Lemma 2.2, we can find a sequence
(fx)ken of bounded Lipschitz functions—under some compatible metric on Z—converging
pointwise to f. As 0 < fi < fra1 < f for all k& € N, the monotone convergence theorem

implies

/ fdy= sup/ frdy =sup (hm / fx d%) < lim inf (Sup/ fr d%) )
z keN J =z kEN \" 7 Jz n—=0 \keNJz

Applying the monotone convergence theorem again,

fdvy <liminf (sup/ fr dfyn> = lim inf/ fdvya.
=z n—00 keN J z n—0o0 z
O

Remark 2.3. If the weak topology on &?(Z) is metrizable, Proposition 2.1 essentially shows
that the functional v — [, fdy is lower semi-continuous. The weak topology on £ (Z) is
indeed metrizable (and separable) provided Z is separable; see Theorem 15.12 of [AB06].

The essence of Lemma 2.2 and Proposition 2.1 is the approximation technique based on
the collection of all bounded Lipschitz functions. This collection plays an important role in
weak convergence as well, namely, we may replace Cy(Z) with this collection in (2.1). In
fact, there are many alternative definitions of weak convergence, which is summarized as
follows; see Theorem 11.1.1 of [Dud02] for the proof.
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Theorem 2.1 (Portmanteau Theorem). Let Z be a metrizable space, (Vn)nen be a se-

quence in P(2), and v € P(Z). The following are equivalent.
(i) (Yn)nen converges weakly to .

(i1) Given any compatible metric p on Z,

lim fd’yn:/fdy Vf € BL(Z,p).
z z

n— o0
(11) iminf, o 7, (G) > ~v(G) for every open set G C Z.
(i4i) limsup,, .. Yn(F) < (F) for every closed set F' C Z.

(1v) lim,, o0 Yn(B) = vn(B) for every set B C Z such that v(0B) = 0.

Now, we shift our interest to compactness in the weak topology. It turns out that the

following regularity called tightness plays a crucial role.

Definition 2.2. Let Z be a metrizable space. We say v € (Z2) is tight if for any € > 0,
there exists a compact set K such that v(Z\K) < e. We say a collection P C Z(Z) is tight
if for any € > 0, there exists a compact set K such that v(Z\K) < ¢ for all v € P.

Remark 2.4. If Z is a Polish space, any element of Z(Z) is tight, which is referred to as
Ulam’s theorem; see Theorem 7.1.4 of [Dud02].

We introduce Prokhorov’s theorem, the most fundamental result establishing compact-
ness in the weak topology. Essentially, it relates tightness of P C Z?(Z) with relative
compactness; see Theorems 5.1 and 5.2 of [Bil99] or Lemma 15.21 and Theorem 15.22 of
[ABO06] for the proof.

Theorem 2.2 (Prokhorov’s Theorem). Let Z be a metrizable space and P C P (Z).

(i) P is tight.

(i) Any sequence in P has a weakly convergent subsequence (its limit may not be in P).
(iii) P is relatively compact.
Then, (i) implies (ii). If Z is separable, (ii) and (iii) are equivalent. If Z is a Polish space,
(ii) = (iii) implies ().
Remark 2.5. In Theorem 2.2, (ii) is often referred to as relative sequential compactness of
P. In general, relative compactness and relative sequential compactness are equivalent in a

metrizable space. Hence, (ii) and (iii) are equivalent provided the weak topology on Z(Z2)

is metrizable, which is true if Z is separable (Remark 2.3).
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2.2 Existence of optimal transport plans

First, we give an alternative characterization of a transport plan that is useful in metrizable

space cases (compare with Lemma 1.5).

Lemma 2.3. v € (u,v) if and only if
/X el ey = /X o(x) () and /X U () = /y b(y) dv(y).

for all (p,¥) € Cp(X) x Cp(Y).

Proof. Define a map Py: X x Y — X as Pxy(x,y) = x. Note that, Py is measurable with
respect to (X x Y, B(X) @ A(Y)) and (X, B(X)). It suffices to show that (Py)uy = p if
and only if

/Xxy@(ﬁ)d’y(x,y):/ () dya(z)

X
for all ¢ € Cp(X). Also, (Py)xy = p if and only if

/wd(Px)M:/s&du,
X X

for all ¢ € Cp(X) by Lemma 2.1. Since the change of variables formula yields

/sod(Px)#’y=/ @ dy
X X%y

for all ¢ € Cy(X), we prove (Py)xy = p if and only if

/ sodv—/sodu.
XY X

In this case, II(p, v) is closed in the weak topology on Z(X x ).
Proposition 2.2. II(u,v) is closed in (X x Y).

Proof. Let (7n)nen be a sequence in II(u, v) converging weakly to some v € Z(X x ).
Then for each ¢ € Cy(X) since (x,y) — @(x) is in Cp(X x V),

/ p@) dy(e,y) = lm | o@)dy(z,y) = / o(z) du(z).
XxY

n—00 XXy x

Repeating the same process with ¢ € Cy(Y) yields v € II(u, v) due to the previous part of

the lemma. O
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Now, we present the main theorem. As mentioned earlier, the key is to prove II(u,v) is

compact in the weak topology on Z(X x )).
Theorem 2.3 (Existence of Optimal Transport Plans). If p € Z(X) and v € Z())

are tight, I1(p, v) is compact in (X x V). Moreover, if the cost function c is lower semi-
continuous, the Kantorovich problem admits a minimizer, i.e., there exists an optimal trans-

port plan.

Proof. Since TI(pu,v) is closed, it suffices to show that it is relatively compact to prove
compactness; due to the separability of X x ), tightness implies relative compactness in the
weak topology of (X x)) (see Theorem 2.2). Since p and v are tight, for € > 0, there exist
compact sets K and L such that u(X\K) < € and v(Y\L) < e. Then, for any v € II(u,v),

(X x P\E x L)) < A(X x D\D) +7(A\K) x ¥) = vO\L) + p(X\K) < 2.

Hence, II(u,v) is tight. As mentioned earlier, this leads to compactness. Now, choose a
sequence (Yn)nen in II(p,v) such that [cdy, — K.(u,v). Since II(p,v) is compact, by
taking a subsequence if necessary, we may assume that (7,),en converges weakly to some

~v* € II(p, v). Since c is lower semi-continuous and bounded below, Proposition 2.1 implies

/ cdy* < liminf/ cdy, = K.(u, v).
XY n—oe Jxxy

Hence, v* is an optimal transport plan. O]

Remark 2.6. Notice that the compactness of II(i, v) comes from the tightness of  and v.
If X and Y are Polish spaces, as mentioned in Remark 2.4, all the elements of Z(X) and
P()) are tight; in this case, we can always find an optimal transport plan between p and v

provided c is lower semi-continuous.

2.3 Supplementary results
Proposition 2.3. p € Z(X) and v € P(Y) are tight if and only if T(p,v) is tight.

Proof. We have already shown (=-). To prove (<), assume II(y, v) is tight. Fix e > 0. Then,
we can find a compact set K C X x ) such that y((X x Y)\K) < ¢ for all v € II(u, v). Now,
we define Ky C X such that x € Ky if and only if there exists y € ) satisfying (z,y) € K.
Note that for any v € II(u, v),

pANEKx) = 7(X\Kx) x V) = 7((X x Y\(Kx x V) <A((X x Y\K) <e,

where the first inequality is due to K C Ky x Y. Now, it suffices to prove that Ky is a
compact subset of X. If (U;);c; is an open cover of Ky, then (U; X ));cr is an open cover of
K. Compactness of K implies that there exists a finite subcover, say (U; x V)1<j<n. Verify
that (U;)1<i<ny covers Ky. Hence, p is tight. Similarly, v is tight. O
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Lemma 2.4 (Tightness of Transport Plans). Let P and Q be tight subsets of P (X)
and P(Y), respectively, and I1(P, Q) be the collection of all Borel probability measures on
X x Y whose marginals lie in P and Q, respectively, i.e., (Px)yy € P and (Py)xy € Q.
Then, 1I(P, Q) is a tight subset of (X x ).

Proof. For e > 0, there exist compact sets K and L such that u(X\K) < ¢ for all p € Z(X)
and v(Y\L) < ¢ for all v € Z()). Hence, for any v € II(P, Q),

(X X YN x L)) < y(X x (V\L)) +7(X\K) x V)

= (Py)yY(V\L) + (Px) 47 (X\K)
< 2e.

Therefore, II(P, Q) is tight. O

Proposition 2.4 (Stability of Transport Plans). Suppose X and ) are Polish spaces.
Let (pin)nen and (Vn)nen be sequences converging weakly to p in P(X) and v in P()),
respectively. Also, let (Vn)nen be a sequence in P (X x Y) such that v, € U(pp, v,) for all

n € N. Then, (Vn)nen has a subsequence converging weakly to some v € I1(p, v).

Proof. Since X and )Y are Polish spaces, P = {u, : n € N} and Q@ = {v, : n € N} are
sequentially compact, which is equivalent to compactness as the weak topologies on Z(X)
and Z(Y) are metrizable (Remark 2.3). Accordingly, P and Q are tight by Theorem 2.2.
Due to Lemma 2.4, TI(P, Q) is tight; hence, so is {~, : n € N} C II(P, Q). Theorem 2.2 tells
that (vn)nen has a subsequence, say (Vo) )ren, converging weakly to some v € Z(X x )).
Note that

/Xxy o(z)dy(z,y) = hm () dynw)(z,y) = hm/ ) dptnpy () = /Xso(x) dp(z)

k—o0 X xY

for all ¢ € Cp(X). Hence, v € II(u, v) follows due to Lemma 2.3. O
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3 Optimality and Duality in the Kantorovich Problem

This section studies a necessary and sufficient condition for optimal transport plans, which
will serve as the most fundamental result in optimal transport theory. In addition, we show
that the Kantorovich problem is associated with its dual problem, generalizing the duality

theory of finite-dimensional linear programming to the infinite-dimensional case.

Settings Throughout this section, X and ) are separable metrizable spaces unless other-
wise stated; we consider the Kantorovich problem between (X, Z(X), ) and (¥, B(Y),v)

with a cost function c.

3.1 Overview

We first briefly discuss high-level ideas of optimality and duality.

Optimality It turns out that the support of a transport plan determines optimality; such
a property is called the c-cyclical monotonicity. More precisely, if v € TI(u, v) is an optimal

transport plan,
n

Z c(xi,y;) < Z (4, Yo(i))
=1

i=1
for any n € N, (z1,y1),..., (Zn,yn) € supp(y), and any permutation ¢ € Perm(n). To
see why optimality is related to such a condition, let us consider a simple example, where
p= 16, + 30,, and v = 16, + 16,,. Suppose that v = 20(z,41) + 20(ss4.) 1S an optimal
transport plan. Then, c¢(x1,11) + c(x2,y2) < ¢(x1,y2) + ¢(x2,y1) must hold; otherwise,
Y* = 20(21,92) + 30(zs,) incurs the smaller cost than v, contradicting ~ is optimal.
Duality Besides the optimality result, we will derive the duality result of the Kantorovich
problem. The dual problem takes the following form:

maximize / edu + / Ydu,
X y
subject to  (p,v) € L'(n) x L'(v),

o(x) +¥(y) < clz,y) Y(z,y) € X x ).
By Lemma 1.5, note that the dual objective function is
Dipt)i= [ pdu+ [wav= [ (ola)+ 0 drtay) ¥y € M)
X y AxY

Due to the constraint of the dual problem, D(¢, 1) < K.(u,v) for any dual variable (¢, 1),
which implies that the supremum of the dual problem < K.(u,v). Under mild conditions,

we will see that this inequality becomes equality, showing the duality.
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Semi-Duality The objective function D of the dual problem increases if we replace the
dual variable (p,1)) with (¢, ¢°), where ¢°(y) = inf,cx (c(z,y) — p(x)), because ¥ < p°. In
other words, p“—called the c-transform of p—is the largest possible function v such that
o(x) +¥(y) < e(x,y) for all (z,y) € X x Y. Accordingly, maximizing the following, called

the semi-dual problem, is equivalent to the dual problem:

@ S(p) :Z/sodwr/socdv
X Yy

The semi-duality, i.e., the supremum of S over a suitable collection coincides with K.(u, ),
holds under mild assumptions. Also, the semi-dual problem admits a maximizer, say ,,

satisfying a property called c-concavity. Importantly, for any optimal transport plan ~,

| le) + i) o) = S(e) =Ko = [ can,
XxY AXY
which implies that v is concentrated on the following set called the c-superdifferential of ¢:

{(z,y) € X x YV o(x) + ¢°(y) = clz,y)}-
This set will play an important role in characterizing optimal transport plans.
Definition 3.1. Let X and ) be nonempty sets and ¢: X x Y — R.

(i) A subset IT of X x ) is said to be c-cyclically monotone if

> elwiy) <D el@i o)

i=1 =1

for any n € N, (z1,y1), ..., (Tn,yn) € II, and any permutation o € Perm(n).

(ii)) The c-transform of p: X' — [—o0, 00] is a function ¢°: Y — [—00, 00| defined by

¢°(y) = inf (c(z,y) — p(x)).

reX

Similarly, the c-transform of ¢: Y — [—00, 00] is ¢¥°: X — [—00, 00] defined by

Y(z) = inf (c(z,y) —¥(y))-

yey

(iii) A function ¢: X — [—o0,00] is c-concave if ¢ = ¢ for some ¥: ) — [—00,00].

Similarly, ¢: Y — [—00, 00] is c-concave if ¢ = ¢ for some ¢: X — [—00, 0.
(iv) The c-superdifferential of a function ¢: X — [—o00, 00| is defined by
Ocp :={(z,y) € X x YV : () + ¢(y) = c(z,y)} -
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In fact, all the aforementioned optimality, duality, and semi-duality results are closely
intertwined due to connections among c-cyclical monotonicity, c-transform, c-concavity, and
c-superdifferential. The main result is that every c-cyclically monotone set is a subset of the

c-superdifferential of some proper c-concave function.

Theorem 3.1. Let X and Y be nonempty sets and c: X x Y — R. If1l C X x Y 1s

c-cyclically monotone, there exists a proper c-concave function p: X — [—00,00) such that

IMC{(r,y) € X xYV:p(x)+¢(y) =clz,y)}.

Remark 3.1. Let us consider the case where X =Y =R? and ¢(z,y) = 3|z — y||3. Then,
all the ingredients in Definition 3.1 as well as Theorem 3.1 boil down to well-known convex
analysis results; we see this in Section 5.2. Indeed, Theorem 3.1 is a generalization of Rock-
afellar’s result on cyclical monotonicity (Theorem 5.2), which plays a role in characterizing

the subdifferential of a convex function. We defer the proof of Theorem 3.1 to Section 3.4.

Also, c-concavity plays a crucial role in the semi-dual problem. Recall that the dual

variable (¢, ) is associated with the dual objective function

D(sOW):/XsOduﬂL/y@/}du

We have seen that D(p, 1) < D(p, ), i.e., we can increase the dual objective function
by replacing the (p,1) with (¢, ¢°), which results in the semi-dual problem. In fact, we
can apply this reasoning again to deduce that D(p, %) < D(p%, ¢°%) < D(¢“, ¢“¢). Can
we increase D endlessly by repeating this process? It turns out that ¢° = ¢°° meaning

C

that this process causes no increase after (¢, ¢°). The crucial fact ¢ = ¢ is indeed a

key result in characterizing c-concavity. We will show that any c-concave function remains
unchanged after taking the c-transform twice.
All the discussions so far will be restated in the subsequent sections, rigorously checking

technical details. To this end, we prepare basic properties the c-transform and c-concavity.
Proposition 3.1. Let X and Y be nonempty sets and c: X xY — R. Fix p: X — [—00, 00].
(i) ¢ = —o00 if p(x) = oo for some x € X.
(i1) ¢° = o0 if p = —00.
Now, suppose ¢: X — [—00,00) and ¢ is proper.
(11i) ¢°: Y — [—00,00).
(v) () + ¢ (y) < c(z,y) for all (x,y) € X x Y.
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Remark 3.2. Note that ¢° in (iii) of Proposition 3.1 might not be proper, i.e., p* = —oco

can happen. For instance, consider X =) =R, ¢(z,y) =0, and p(z) = 2°.

Next, we characterize c-concave functions. As mentioned earlier, the key is that any

c-concave function remains unchanged after taking the c-transfrom twice.

Proposition 3.2. Let X and ) be nonempty sets and c: X xY — R. Fix p: X — [—00, 00].
(i) ¢ > ¢.
(i1) ¢ = ¢ if and only if ¢ is c-concave; in this case, only one of the following is true:

(1) ¢ =00 and p° = —o0.
(2) p = —00 and p° = 0.
(3) p: X = [—00,00) and p°: Y — [—00,00), where both ¢ and ¢° are proper.

Remark 3.3. As in Remark 3.1, if ¥ = Y = R? and ¢(z,y) = 1|z — y||3, Proposition 3.2

boils down to the standard result on conjugate of convex functions.
Lastly, we derive topological properties of c-concave functions.
Proposition 3.3. Let X and Y be nonempty sets and c: X x Y — R.
(i) If ¢ is bounded, every proper c-concave function is bounded.
Let X and Y be topological spaces and suppose ¢ is continuous.
(i1) Every c-concave function is upper semi-continuous.
(11i) O.p is closed for every c-concave function.
Let X and Y be metric spaces.
() If ¢ is uniformly continuous, every proper c-concave function is uniformly continuous.
(v) If ¢ is L-Lipschitz for some L > 0, every proper c-concave function is L-Lipschitz.

We defer the proofs of Propositions 3.2 and 3.3 to Section 3.4.
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3.2 Optimality

Now, we are ready to establish the optimality result. We first start with the following
necessary condition for optimal transport plans, stating that every optimal transport plan

has a c-cyclically monotone support.

Proposition 3.4. Suppose ¢c: X x Y — R is continuous and K.(u,v) < oo. Then, the

support of any optimal transport plan is c-cyclically monotone.

The formal proof of Proposition 3.4 is defer to Section 3.4. Instead, consider a simple
case where both p and v are finitely supported. Suppose v is an optimal transport plan
whose support is not c-cyclically monotone. By definition, we can find (z1,y1), ..., (Tn, yn) €

supp(y) and a permutation o € Perm(n) such that

C:= Z xzayl Z (xiayo(i)) > 0.

=1

Note that - is also finitely supported; hence, (x;,y;) € supp(y) implies w; := y({(z;,y:)}) > 0
for all i € [n]. Take n > 0 such that nn < minep, w; and let

V'=7-n z”; O(aiys) 1 z”; O(ai0(i))
By definition,
()2 9(8) =13 Ba(5) 2 30(1() ~ Wil () VS € B x ).
i=1 =1

Hence, v* € Z(X x V). Also, v* € II(u, v) follows as

(AX D) =54 ) =0 3B A) +1 Y0 ) = () VA€ AX)

=1
V(X x B) = (X x B) nzcsyl +nzn:5 o (B)=v(B) VBeBY).

Therefore,
/cd»y* = /cd’y — an(mi,yi) —l—an(mi,ya(i)) < /cdfy,
i=1 i=1

where the last inequality holds because C' > 0.* This contradicts that 7 is optimal. Therefore,

supp(7) must be c-cyclically monotone.

4Note that the strict inequality holds as J ¢dy < oo which follows from K(u,v) < oc.
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In summary, if the support is not c-cyclically monotone, we can modify a transport plan
by reallocating the mass at such points (x1,41), ..., (Tn, Yn) t0 (T1,Ys(1)), - - -5 (Tns Yo())- In
the case where y and v are not necessarily finitely supported, we can still apply this idea by
taking a small open rectangular U; x V; containing (x;,y;) for each ¢ € [n] and reallocating
the mass on Uy x Vi,...,U, x V;, to Uy X Vi), ..., Uy X Vo).

We show that the converse is true under mild assumptions, thereby proving that c-

cyclically monotone support is the necessary and sufficient condition for optimality.

Theorem 3.2 (Optimality). Suppose ¢c: X x Y — R is continuous and K.(u,v) < oo.

Assume
/ c(z,y)du(z) <oco Vye) and / c(x,y)dr(y) < oo Ve e X. (MC)
X Yy

For v € I(u,v), the following are equivalent.
(i) ~v is an optimal transport plan.
(7i) supp(y) is c-cyclically monotone.
(iii) There exists a proper c-concave function p,: X — [—00,00) such that supp(y) C O.,.

Proof. We have already proved (i) = (ii) by Proposition 3.4. Also, (ii) = (iii) holds by
Theorem 3.1. Suppose (iii) holds. We show that ¢ € L'(u) and (¢5)™ € L'(v). First,
Y, and ¢S are measurable as they are upper semi-continuous by Proposition 3.3. As ¢, is
proper, ©,(x) + ¢5(y) < c(z,y) for all (z,y) € X x Y by Proposition 3.1. Hence, for any
Yo €V,

po() < c(z,90) = ¢o(yo) Va e X. (3.1)

As 0., contains supp(7y) which is nonempty, ¢¢ is proper. Hence, we may pick yo € Y
such that ¢¢(yo) € R. Then, (MC) and (3.1) imply ¢ € L'(p); similarly, (¢)* € LY(v).
Therefore, for any 7' € I(u, v),

/){%dw/ywidvZ/XW(%(@“)+90§(y))d7’(937y) S/Xxycdv’, (3.2)

where the equality is due to Lemma 1.5 and the inequality holds as ¢,(x) + ¢5(y) < ¢(x,y)
for all (x,y) € X x Y by Proposition 3.1. Meanwhile, note that

[ u+ /y erv= [ (ula) + ) drley) = [ e ey

XxY

where the second equality is due to supp(y) C O.p,. Therefore, by comparing (3.2) and
(3.3), we conclude that ~ is an optimal transport plan. O
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Remark 3.4 (On Moment Condition). As we have seen in the proof of Theorem 3.2,
the Moment Condition (MC) guarantees the following: for any proper c-concave function
p: X — [—00,00), we have p™ € L'(u) and (¢°)* € L'(v). This enabled us to obtain (3.3)
for ¢, in (iii), which—together with the assumption K.(u,v) < co—leads to ¢, € L*(u) and
¢¢ € L'(v). In fact, (MC) is a mild assumption which is satisfied in many situations. First,
it is obvious when ¢ is bounded; in this case, K (i, v) < oo is also guaranteed. As we will

see later, another common situation is where we can find a € L'(u) and b € L' (v) such that
co(z,y) < a(z) +b(y) Y(z,y) e X xD, (34)
which also ensures K.(u, v) < co.

Remark 3.5. In the proof of Theorem 3.2, note that (iii) = (i) still holds even if we
replace c-concavity of ¢, with measurability of ¢,. In other words, Theorem 3.2 is still true
even if we weaken the condition (iii) as follows: there exists a proper measurable function

Yo X — [—00,00) such that supp(y) C Oepo-

One important implication of Theorem 3.2 is that (iii) implies that the support of any

optimal transport plan is contained in 0.¢,.

Corollary 3.1. In Theorem 3.2, if (iii) holds for some v € Il(u,v), the support of any

optimal transport plan (including v) is contained in Opp,.

Proof. We have already proved that 7 is optimal from (iii) = (i) of Theorem 3.2. Let ~' be

any optimal transport plan. As in the proof of (iii) = (i), we have

/ cdv’z/ cdvz/%dw/widv:/ (o + p5) dv,
X XY X XY X Yy XxY

where the first equality is due to optimality of v and +" and the other two equalities are from
(3.2) and (3.3). As @,(x) + ¢i(y) < c(x,y) for all (z,y) € X x Y by Proposition 3.1, we have
v (0epo) = 1. Since 0., is a closed set by Proposition 3.3, we conclude supp(y') C 0.pp,. [

3.3 Duality and semi-duality

For ¢, in (iii) of Theorem 3.2, we have indeed shown that

Kc(uw)z/ wodu+/w§du
X Y

This is the semi-duality mentioned earlier. It is worth noting that optimality and semi-
duality come together; plus, this also means that the dual problem admits a maximizer.

Before stating the details, we first formally define the dual and semi-dual problems.
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Definition 3.2. Consider the Kantorovich problem between two probability spaces (X, A, i)
and (), B,v) with a cost function c¢. We write p @ ¢ < cif p: X — [—00,00] and ¥: Y —
[—00, 00| are measurable functions such that p(z) + ¢¥(y) < c(z,y) for all (z,y) € X x V.

The dual problem of the Kantorovich problem is defined as follows:

maximize / pdp + / Ydu,
X Y
subject to  (p,) € L'(u) x L'(v),

pdyY <ec

The semi-dual problem of the Kantorovich problem is defined as follows:

maximize /gpd,u—{—/gpcdu,
X Yy

subject to (¢, ¢°) € L'(u) x L'(v).

By definition, one can easily verify that the supremum of the dual problem or the semi-

dual problem is bounded above by K.(u,v), i.e.,

sup (/@du+/wd1/>, sup (/s@du+/wch> < Ke(p,v).
(p)eL (=1} (v) \Jx y (p:p°)EL () x L1 () \J & Y

pdyp<c

Under mild assumptions, the dual and semi-dual problems have the same supremum.

Lemma 3.1. Suppose c: X x Y — R is continuous and K.(u,v) < co. Then,

sup (/ @du%—/dzdv) = sup (/ godu+/gocdu).
(p)eL (u)x L (v) \J X y ()L (u)x L1 (v) \J X y

pdp<c

Proof. Let D be the supremum of the dual problem and S be the supremum of the semi-
dual problem. First, note that (¢, ¢%) € L'(u) x L*(v) implies p: X — [—00,00) must be
proper; hence, ¢ & ¢¢ < c¢. Therefore, D > S holds. For any (¢,v) € L'(u) x L'(v) such
that ¢ @ ¥ < ¢, note that ¥(y) < c(z,y) — p(z) for all (z,y) € X x Y as ¢ < oo and
p: X — [—00,00) must be proper. Therefore, 1) < ¢ holds, which also implies ()~ < ¥~
and thus (¢¢)~ € L*(v). Accordingly,

/Xsodqu/ysocdvz/X y(cp(x)ﬂf(y))dv(ay) Vy € (p, v),

where the first equality is due to Lemma 1.5. As K.(u, ) < oo, this shows fy pedr < oo,
proving ¢° € L'(v). This shows that D < S, and thus D = S holds. O

Now, we finally derive the following result from Theorem 3.2.
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Corollary 3.2 (Semi-Duality). Suppose c: X x Y — R is continuous and K.(u,v) < oc.

Assume
/ c(z,y)du(z) <oco Vye)Y and / c(z,y)dv(y) < oo Va e X. (MC)
X Yy

If p and v are tight, there exists a proper c-concave function @,: X — [—00,00) such that
(00, 05) € L (p) x L} (v) and

min / cdvz/good,u—f—/gogdl/. (3.5)
Yel(pv) Sy sy X y

Accordingly, the following versions of semi-duality hold:

K.(u,v) = max / d +/ Cdu)
() (%sﬂc)eLl(u)XLl(V)( XSO a ySO

(3.6)
= max (/ gpdu—}—/gpcdl/),
p: X—[—00,00) X y

proper and c-concave

where , is a maximizer of both semi-dual problems. Also, the following duality holds:

K.(u,v) = max (/ cpdﬂ+/¢dl/> : (3.7)
(pp)eL (w)x L' (v) \Jx Y

pDY<c

where (o, ©S) is a mazimizer of the dual problem.

Proof. Tightness of u and v guarantees existence of optimal transport plans by Theorem 2.3.
Hence, we can invoke the function in (iii) of Theorem 3.2; denote it as ,. Then, we have
already seen that (3.5) holds. We have also mentioned (p,, ¢¢) € L*(u) x L'(v) in Remark
3.4. Hence, we can see that the first equality of (3.6) holds; for the same reason, we have
(3.7). To verify the second equality of (3.6), notice that for any ¢: X — [—o00,00) that is
proper and c-concave, we have ¢ € L'(u) and (¢°)" € L'(v) as in Remark 3.4. Hence, as

in the proof of Theorem 3.2, we have

/gpdu—i—/cpcdngc(u,y).
X y

This shows the second equality of (3.6). Due to (3.5), we can see that the right-hand sides
of (3.6) and (3.7) admit a maximizer: ¢, or (¢,, ©5). O

Remark 3.6. In Corollary 3.2, we can weaken the constraint of the semi-dual problem
(o, ¢%) € L' () x L' (v) by only requiring ¢: X — [—00, 00) is proper and measurable such
that p°: ) — [—00, 00) is also proper. The latter implies that o™ € L'(u) and ()" € LY(v)
as in the proof of Theorem 3.2 due to (MC). Hence, we still have

/gpdu—i—/gpcdl/ch(u,y).
X y
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Remark 3.7. The c-concave function ¢, in Corollary 3.2 enjoys regularity properties that
inherit from c. For instance, boundedness of ¢ implies that ¢, and ¢¢ are bounded. Next,
suppose we have equipped X and ) with compatible metrics, respectively. Then, uniform
continuity of ¢ implies that both ¢, and ¢¢ are uniformly continuous by Proposition 3.3.
Similarly, L-Lipschitzness of ¢ implies that both ¢, and ¢¢ are L-Lipschitz. Consequently,
we can replace the constraint L'(pu) x L'(v) of the dual problem with a smaller class without
decreasing the maximum as long as that class contains (¢,, ¢%) as shown in the following

lemmas.

Lemma 3.2. Equipping X and Y with their compatible metrics, suppose c: X x Y — R s
uniformly continuous and bounded. If p and v are tight, the following duality holds:

K.(p,v) = max / dup + / dy),
() (L) €CH(X)xCu(V) ( XSO : yw
PpOP<c

where the right-hand side admits a maximizer.

Proof. We can apply Corollary 3.2; boundedness of ¢ implies K.(u, v) < oo and (MC). Then,
¢ € Cp(X) and ¢ € Cy()) are guaranteed by Proposition 3.3. As discussed in Remark 3.7,

max dp + / wdy> = max (/ dp + / wdy>
(L) €CH(X)xCy(V) (/X i hY (p)eLl (WxL'(v) \Jx 7 hY
@ p@P<c

®y<c ®Y<

as (o, 0¢) € Cy(X) x Cy(Y) C LY (p) x L'(v) is a maximizer of the dual problem. O

Remark 3.8. Notice that 3.2 is applicable if ¢: X x ) — R is a continuous cost function

and X, ) are compact metrizable spaces.

Lemma 3.3. Equipping X and Y with their compatible metrics, say px and py, respectively,
suppose c¢: X x ) — R is L-Lipschitz and bounded. If u and v are tight, the following duality

holds:
K. (1, v) = max d +/ d’/)v
(,u ) (p,)EBL(X,px)x BL(Y,py) (/XSO : J/w
pdP<c

where the right-hand side admits a maximizer.

Proof. We can apply Corollary 3.2; boundedness of ¢ implies K.(u, v) < oo and (MC). Then,
¢S € BL(X, py) and ¢S € BL(Y, py) are guaranteed by Proposition 3.3; in fact, ¢, and ¢¢
are L-Lipschitz. As discussed in Remark 3.7,

max du + / dl/) = max ( / du + / dl/)
(¢ )EBL(X,px)x BL(V,py) (/X 2 Y v (p)eLl (W)xL*(v) \Jx 7o v v
pOY<c P®Y

<c

as (o, ¢¢) € BL(X, px)x BL(Y, py) C L'(1) x L' (v) is a maximizer of the dual problem. [J
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Lastly, we extend the duality result to the case where c¢ is lower semi-continuity. The key
idea is to approximate ¢ with a sequence of bounded Lipschitz—hence uniformly continuous—

functions by Lemma 2.2.

Theorem 3.3 (Kantorovich Duality). Suppose ¢ is lower semi-continuous. If p and v

are tight, the Kantorovich duality holds:

Ke(p,v) = sup (/ s@du+/¢dV)- (3.8)
() ECH(X) X Cp (V) X Yy

pDY<c
Proof. 1t suffices prove < instead of = in (3.8). As ¢ is lower semi-continuous and bounded
below, we can find a sequence (¢, )nen of uniformly continuous and bounded functions such
that ¢, 1 ¢ by Lemma 2.2. Let =, be an optimal transport plan with respect to the cost
function c¢,; the existence is guaranteed by Theorem 2.3. The same theorem states the
compactness of II(u, ). Hence, by taking a subsequence if necessary, we may assume that

(Vn)nen converges weakly to some v € II(u, ). Then the duality follows since
Ke(p,v) < /cdv

= lim [ ¢, dy (. monotone convergence theorem)

m—0oQ
= lim (lim /cm d%> (. vn — v weakly)
m—ro0 n—oo

< limsup/cn Ay, (o em < ¢y, for n >m).

n—oo
Now, we apply Lemma 3.2 to each ¢,, which is possible since ¢, is continuous and bounded

and thus II., (u, V) is nonempty. Hence,

Cn dy, = max (/ godu—i-/wdl/)g sup (/gpd,u—i—/#zdu),
/ (<P7¢)€Cb(/¥<)><cb(y) X hY% () ECH(X)xCp(Y) \JXx y
©

Sp<cn pdp<c

where the last inequality holds since ¢,, < ¢. Therefore, we have

Ke(p,v) < sup (/ sodu+/@/}dV)'
(o) ECH(X)xCp(Y) \J X hY%

pdYP<c

Remark 3.9. In Theorem 3.3, one can show the following:

K.(, v) = sup (/ sodm/wdu),
(e, )EBL(X,px )X BL(Y,py) X h%

POP<c
where py and py are compatible metrics of X and ), respectively; simply use Lemma 3.3

instead of Lemma 3.2 in the proof of Theorem 3.3.

36



3.4 Omitted proofs

Proof of Proposition 3.2. (i) By definition, we have ¢°(y) < c(z,y) — ¢(z), which implies
o(x)—c(z,y) < —¢°(y). As cisreal-valued, by adding ¢(x, y), we have p(z) < c(x,y)—¢°(y)
for all (x,y) € X x Y. Therefore, for all z € X,

p“(z) = ;gjlf, (c(x,y) — ¢°(y) = ().

(ii) Clearly, ¢ = ()¢ implies that ¢ is c-concave by definition. Conversely, if ¢ is c-concave,
i.e., p = ¢ for some ¢: Y — [—00, 0], by applying (i) to ¥ based on symmetric, we have
@ = >1. From ¢¢ > 1), we have ¢ < )° = ¢. Hence, ¢ = p*. O

Proof of Proposition 3.3. (i) Let ¢: X — [—00,00] be a c-concave function and |¢] < M
for some M > 0. Then, ¢°(y) < c(x,y) — ¢(x) < M — p(z) implies that ¢ is bounded
above by some L > 0. This also means that ¢ = (¢°)¢ is bounded above by symmetry and
p=p“°>—-M — L, ie., ¢ is bounded below.

(i) Let p: X — [—00, 0] be a c-concave function so that ¢ = (¢©)¢. Then for each y € Y a
function = — ¢(z,y) — ¢°(y) is continuous as ¢ is continuous, thus ¢ is upper semi-continuous
since it is defined by the infimum of a collection of upper semi-continuous functions.

(iii) Nothing to prove if 9. = (). Assume 0.¢ # ), equivalently, p: X — [—00, 00) is proper.
Suppose a sequence (T, y,) in O.p converges to (z,y) € X x ). Then,

clx,y) = nh_)r{)lo c(Tn,yn) (. continuity of c)

< limsup p(z,) + lmsup“(ya) (. (¥n,Yn) € Oep)

< (x) +¢°(y) (.- upper semi-continuity)
< ¢(x,y) (. Proposition 3.1).

(iv) Let p; and py be metrics on X and ), respectively. Fix a proper c-concave function
p: X — [—00,00) be a c-concave function. Uniform continuity of ¢ implies that for € > 0,
there exists ¢ > 0 such that pi(x,z")+pa(y,y') < § implies |c(z, y) —c(2’,y')| < €. Therefore,
whenever py(z,2") <9, we have |c(x,y) — c(2/,y)| < e for all y € Y. Hence,

p(z) = inf (c(z,y) — ©"(y)) < inf (c(2’,y) — ©°(y)) + € = (@) + ¢,

yey yey

and by symmetry ¢(z') < ¢(x)+¢e. This means ¢ must be real-valued and |p(z) —¢(2')| < e.

Hence, ¢ is uniformly continuous.

(v) Mimic the proof of (iv): |e(x,y)—c(2’,y)| < Lpi(z,2") implies |p(x) —p(2')| < Lp(z, 2).
[
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Proof of Theorem 3.1. Fix (x,y0) € II. For each x € X, let

o(z) = inf {Z (c(@i, yi-1) — c(@io1,Yi-1)) + (@, yn) — (T, yn) : VN EN, (24, 4;) € H} :
i=1
Clearly, ¢: X — [—00,00) since p(z) < c(z,y0) — c(o,%0). Also, due to c-cyclical mono-
tonicity of II, we have ¢(z) > 0 and ¢(x) + ¢(zo,y) — c(z,y) > 0 and hence p(z) > —oo for
any (z,y) € II, which proves ¢ is proper. For each y € ), let

—(y) = inf {Z (c(ri,yi1) — c(@im1,¥i1)) — (T, Yn) = V0 €N, (24, 4:) € Iy, = y} :
i=1
By definition, —1(y) < oo, equivalently ¢(y) > —oc if and only if (z,y) € II for some x € X.

One can verify that

() = inf (c(z,y) —¥(y)),

yey
which proves ¢ = 9¢ and hence ¢ is c-concave. For each (z,y) € II, we claim that p(z) +
©°(y) = c(x,y). Clearly, p(z) + ¢°(y) < ¢(x,y) holds since ¢ is proper. Since ¢(x) > —o0,
for each € > 0 we can find y. € ) such that

o(r) <clz,y:) — YY) < p(z) +e

Then
—(y) < =(ye) + (e, ye) — ez, y) < @(x) — ez, y) +e¢,
where the first inequality holds by the definition of —t. This proves —¢(y) < p(z) — ¢(x,y)

and hence c(z,y) < ¢(x) + ¥ (y). O

Proof of Proposition 3.4. Let v be an optimal transport plan and suppose supp(y) is not
c-cyclically monotone. By definition, we can find (x1,v1),..., (s, yn) € supp(y) and a

permutation o € Perm(n) such that

n

C .= Z C(ZEZ‘, yz ZC xhya(z
=1

=1

As ¢ is continuous, for each i € [n], we can find open neighborhoods U; C X and V; C Y of

x; and y;, respectively, such that

c(z,y) > c(zi,y;) —e V(x,y) € Ui x Vi,
C(l’,y) < C(xiyya(i)) +e€ V(x,y) e U; x Vg(i),

where € > 0 is a constant such that ¢ < % For each i € [n], let S; = U; x V;; then,

(x;,y;) € supp(~y) implies v(S;) > 0; hence, we can define v;(A) := v(A N S;)/v(S;) for all
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A e B(X xY); also, let p; and v; be the marginals of 7; on X and Y, respectively. Take
n > 0 such that nn < min,cp, 7(S5;) and let

V' =7- ni% +nim ® Vo (i)
=1 i=1
By definition,
_ni%(S) > ~(S) —%gv(SﬂSi) >0 VS e BXxY)
Hence, v* € 2(X x V). Also, v* € II(y, v) follows as
(AX ) =54 ) =0 YA +n Y ) = A) VA € D)
pa
Y(X x B) = 4(X x B) — nZyi(B) + niug(i)(B) —v(B) VB e B(Y).

i=1

For each i € [n], as v; and ji; ® vy(;) are concentrated on S; and U; x V), respectively,

/Cd%‘ > c(ws,y;) —e  and /Cdﬂi ® Vo(i) < (T4, Yo(i)) + €.

Therefore,

/cd’y*z/Cd”y—ﬁZ/Cd%+772/Cdﬂi®”o(i)
/Cd’}/ 7’]2 xwyz “1“772 l‘myoz +5)

< /cd77

where the last strict inequality holds since the assumption K.(u, v) < oo implies [ ¢dy < co.

This contradicts that v is optimal. Hence, supp(y) must be c-cyclically monotone. O
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4 Applications of Optimality and Duality

Settings Asin Section 3, X and ) are separable metrizable spaces unless otherwise stated;
we consider the Kantorovich problem between (X, #(X), 1) and (Y, Z()),v) with a cost

function c.

4.1 Stability of optimal transport plans

Given sequences (pin)neny and (v )nen in Z(X) and Z (), respectively, consider a sequence
(Vn)nen in & (X) such that ~, is an optimal transport plan from p,, to v, i.e., v, € (pn, vn),
for all n € N. If (tty)nen and (v,)nen converge weakly to p € Z(X) and v € Z()),
respectively, we show that (7,),eny has a subsequence converges weakly to some optimal
transport plan from p and v, i.e., the weak limit is contained in II.(u,v). If T.(u,v) is a
singleton, i.e., there exists a unique optimal transport plan from p to v, then the whole

(7n)nen sequence converges weakly to that unique optimal transport plan.
Lemma 4.1. Let Z be a separable metric space. Fix N € N.

(i) For v € P(2), let v*N € P(ZV) denote the product of N copies of . Then,
supp(y#") = supp(y)".

(i1) Let (Yn)nen be a sequence in P(Z) converging weakly to some v € P(Z). Then,
(V2N),en converges weakly to &N in P (ZV).

Proof. We prove for N = 2. Let S = supp(7). Note that S? =S x S C Z x Z is closed and
1®2(S?) = 4(S)? = 1. Hence, supp(7®?) C S?. Now, suppose (21, 29) € Z*\supp(7®?); by
definition, we can find an open neighborhood U of (z1, z9) such that v*?(U) = 0. Further
assume (z1,29) € S?, i.e., 21,29 € S. For any r > 0, let B,(z) C Z denote the open ball
of radius r centered at z € Z. We can find r > 0 such that B,(z1) x B.(z2) C U. Then,
¥22(B,(21) X B,(22)) = 0 as v**(U) = 0, which implies v(B,(21)) = 0 or 7(B,(22)) = 0. This
contradicts 21,22 € S. Therefore, Z?\supp(7®?) C 22\ S?. Hence, supp(7%?) = 52 For (ii),
refer to Theorem 2.8 of [Bil99]. O

Lemma 4.2. Let (7,)nen be a sequence in Z(X x V) converging weakly to v € 2(X x Y).
Suppose c: X x Y — R is continuous and supp(~y,) is c-cyclically monotone for all n € N.

Then, supp(7) is c-cyclically monotone.

Proof. Let Z =X x ). For each N € N, define

Ay = {((xlvyl); (N, yn)) € 2V ZC(%,?/@) < Zc(mi,ya(i)) Vo € Perm(N)} )

i=1 =1
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Note that c-cyclical monotonicity implies supp(y,)Y C Ay. Hence, using Lemma 4.1, we

have
YEN(An) = 2N (supp(n)™) = ¥ (supp(1E™Y)) = 1.

As ¢ is continuous, Ay is a closed set. By Theorem 2.1, we have

YV (An) = limsup 7Y (An) = 1.

n—oo
Hence, we conclude supp(7®") C Ayx. As supp(v®Y) = supp(y)Y, we have supp(y)"¥ C Ay.
Since this holds for all N € N, we conclude that supp(y) is c-cyclically monotone. O

Theorem 4.1 (Stability of Optimal Transport Plans). Let X and ) be Polish spaces.
Suppose c: X x Y — R is continuous and K.(u,v) < oco. Assume

/Xc(x,y) dp(z) <oo VYye) and /yc(a:,y) dv(y) <oco Ve X. (MC)

Let (pin)nen and (vn)nen be sequences converging weakly to p in P(X) and v in P(Y),
respectively. For each n € N, assume K.(pn, v,) < 00 and pick v, € He(pin, V).

(1) (Yn)nen has a subsequence that converges weakly to some v € M.(u,v).

(71) (Yn)nen converges weakly to v* provided I.(u,v) = {7*}.

Proof. Recall that supp(,) is c-cyclically monotone for all n € N by Proposition 3.4. Also,
(7n)nen has a subsequence that converges weakly to some v € II(u,v) by Proposition 2.4.
By Lemma 4.2, supp(y) is c-cyclically monotone, which implies v € Il.(u, ) by Theorem
3.2. Now, suppose II.(u,v) = {7*}. By Theorem 2.2, any subsequence, say [J, of (V,)nen
must converge weakly. Applying (i) to the sequence J, we conclude that [J has a further
subsequence converging to 4*, which means the weak limit of [J must be v*. In summary,
any subsequence of (7, )nen converges weakly to v*, which proves that the whole sequence

n)neny Must converge weakly to v*. []
(Yn)ne g y to 7y

4.2 Kantorovich-Rubinstein theorem

We study the case where ¢ is a metric on X = ). In this case, c-concavity and c-transforms

become very simple as follows.

Lemma 4.3. Given a set X, suppose c: X x X — R, is a metric on X.° A proper function

p: X = [—00,00) is c-concave if and only if ¢ is real-valued and

lo(z) — ()| < c(z,y) Yo,y e X.

In this case, ¢ = —p.

5We may assume c is a pseudometric.
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Proof. 1f ¢ is c-concave, ¢ = p° implies that for any z1, x5 € X,

plan) = inf (c(z1,y) — ¢*(y)) < Inf (cz2,y) = @ (Y) + (@1, 22) = p(22) + e, 72).

inf
yeX
This implies that ¢ = —o0 if p(z) = —oo for some x € X. As ¢ is proper, we conclude that ¢
be real-valued and ¢(x1) —p(z2) < ¢(x1, z2) holds; by symmetry, |o(z1) — p(z2)| < c(x1, 22).

Conversely, |¢(x) — ¢(y)| < c(z,y) implies —p(z) < ¢(x,y) — p(y) for all z,y € X'. Hence,
_ — inf _
plz) = inf (c(z,y) = ¢(y)),
where the equality is due to ¢(x,z) = 0. Hence, p¢ = —¢. ]

Theorem 4.2 (Kantorovich-Rubinstein). Suppose ¢ be a metric on X =Y that is con-
tinuous with respect to the product topology of X x X. Assume
/ c(x, o) dp(z) +/ c(x,xp)dr(z) < oo dzg € X.
X X

If i and v are tight,

inf / cdy= sup (/gpdu—/gpdy), (4.1)
yell(pv) Jyxx p: X=R \Jx X

lelle<1
where we define for any p: X — R,
HSOH := sup |90<m) — ga(y)|
TF£y C<$’y)

Moreover, the right-hand side of (4.1) admits a mazimizer.

Proof. Notice that K.(u, ) < oo since

/XXX co(z,y)dp@v < /Xc(l’,iﬁo) dp(z) —i—/ c(z, zo) dv(z) < 0.

x
We use the semi-duality (3.6) of Corollary 3.2:

Ke(p,v) = sup </¢M+/w%0~
p: X—[—00,00) X X

proper and c-concave

Due to the Lemma 4.3,

sup (/gpdu+/<pcdu> = sup (/ @du—/gpdy>.
@: X—)[—oo,oo) X X p: X=R X X

proper and c-concave lellc<1

]

Remark 4.1. Remember that tightness of y and v—which ensures II.(u, ) # (—is required
to invoke Corollary 3.2. Theorem 11.8.2 of [Dud02] shows that (4.1) still holds without
tightness.
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5 Optimal Transport in Euclidean Spaces

This section studies optimal transport problems between Euclidean spaces equipped with
their Borel o-algebras. So far, we have defined optimal transport problems between arbi-
trary probability spaces and derived general results (optimality, (semi-)duality, etc.). In the
Euclidean space case, we can establish much more concrete results that not only provide rich

theory, but also play a crucial role in a number of optimal transport applications.

Settings Throughout the section, both Monge and Kantorovich problems are considered
between (R, Z(RY), 1) and (R4, B(RY),v) with d € N, i.e., X = Y = R? equipped with
the Borel o-algebra on R%, where ¢ denotes the cost function; we call ¢ the quadratic cost
if c(z,y) = 3|lz — y|3 for all z,y € RY®. When d = 1, we write F}, and F, to denote the

distribution functions of p and v, respectively, as in Lemma 1.2.

Remark 5.1. As X = ) = R?, there are many options for ¢, for instance, any distance-
based function, say c¢(x,y) = || —y||2, leads to a natural notion of the unit cost to transport
from z € R% to y € R%. On the other hand, if we assume instead X = R% and ) = R% with
dy # ds, it is unclear how to design a function ¢ over X' x ) that represents intuitive cost
associated with x € X and y € Y. This is the rationale behind the setting X =) = R<.

5.1 Omne-dimensional analysis

Letting d = 1, we consider a case where ¢(z,y) = h(x—y) for some convex function h: R — R
that is bounded below, e.g., ¢(z,y) = |z —y|P for p > 1. In this setting, we can derive a closed
form of an optimal transport plan thanks to Theorem 3.2, which leads to the transport plan
(F ', F; )4 introduced in Proposition 1.5. The key idea is the following “co-monotonicity”.

v

A
wiedl
y Ulj o
Yo b----
| U277 p
7 T

Figure 2: Proof of Lemma 5.1.
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Lemma 5.1. Letting d =1, for v € Il(u,v), the following are equivalent.
(i) For any (x1,y1), (xe,y2) € supp(y) satisfying 1 < x2, we have y; < ys.

(i) v = (F 1 g
Proof. Let F, be the distribution function of 7. Suppose (i). Fix z,y € R. If we prove that
F.(x,y) = min{F,(x), F,(y)}, then (ii) follows by Proposition 1.5. Let A = (—o0, z] X (y, 00)
and B = (x,00) x (—00,y| so that

F(z,y) +v(A) = F.(v) and F,(z,y) +7(B) = F,(y).

Observe that at least one of supp(y) N A and supp(y) N B must be empty; otherwise, we
can find (x1,71) € supp(y) N A and (x2,y2) € supp(y) N B, which leads to z; < x < x5
and y2 < y < y, contradicting (i). Accordingly, v(A) = 0 or (B) = 0 must hold, which
implies F,(z,y) = min{F,(z), F,(y)}. Suppose (ii). Suppose (z1,y1), (22, y2) € supp(y)
satisfy x1 < x9 and y; > yo. By definition, we can find € > 0 such that z; + ¢ < x5 — ¢,
y1 — € > yo + ¢, and y(Uy),v(Usz) > 0, where Uy := (27 —e,21 +¢) X (y1 —€,51 + €) and
Uy = (2 —e,29+¢) X (Yo — €,92 + €). Pick 2,y € R such that x; +e < & < 25 — ¢ and
y1 —€e >y > ys + €. Then,

) +9(U1) > Fy(z,y),
) +7(U2) > F(z,9),

Fu(x) = Fy(x,y) + (=00, 2] X (y,00)) = I (2,y
E(y) = Fy(z,y) +v((2,00) x (=00,4]) = F(z,y
which contradicts F,(z,y) = min{F},(z), F,(y) }. O

Proposition 5.1. Letting d = 1, suppose c(x,y) = h(x—y) for some strictly convex function
h: R — R that is bounded below. If the optimal transport cost is finite, (F;l, F; )\ is the

v

unique optimal transport plan.

Proof. Let v be an optimal transport plan, which must exists by Theorem 2.3. As the
optimal transport cost is assumed to be finite, supp(7y) is c-cyclically monotone by Propo-
sition 3.4. We prove that strict convexity of h implies (i) of Lemma 5.1. To this end,
suppose (x1,41), (T2, y2) € supp(7y) satisfy 27 < x5 and y; > yo. By construction, we have
r1— Y < T1— Yo, Lo — Y1 < Ty — Yo, Which implies, by strict convexity,

(w2 — z)h(@1 — y1) + (41 — y2)h(z2 — 1)

To—T1+ Y1 — Y2
(y1 — yo) (w1 — 1) + (22 — 21)h(22 — Y2)

h(ze — 1) < .
( ) Tog — X1+ Y1 — Y2

h(zq —y2) <

Y

Combining the two inequalities, h(x; — yo) + h(xe — 1) < h(z1 — y1) + h(z2 — y2), which
contradicts c-cyclical monotonicity of supp(y). Therefore, (i) of Lemma 5.1 must hold.
Hence, v = (F;l,F,jl)#/\, concluding that (F;l,Fljl)#/\ is the unique optimal transport

plan; we also conclude that the support of (F; LE; )4\ is e-cyclically monotone. O
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Next, we consider a case where h is convex but may not be strictly convex; in this case,
(F " LE; 1) 4\ is still an optimal transport plan, but uniqueness is not guaranteed. To see

v

this, we use the following lemma to approximate h using a strictly convex function.

Lemma 5.2. Let h: R — R be a convex function that is bounded below. If h is not a
constant function, for any ¢ > 0, there exists a strictly convex function h.: R — R such that

Proof. Without loss of generality, suppose h > 0. As a convex function bounded below by
an affine function, we can find a,b € R such that h(z) > ax + b for all x € R. Since A is not

a constant function, we may assume a # 0. Also, h > 0 implies h(z) > (axz +b)*. Let

\/4 b)2 b
flz) = +(ax+2) rars Vz € R,

then 0 < f <14 h and f is strictly convex. Hence, for € > 0, define h, = h + ef. Then,
h<h.<(1+e)h+e. -

Theorem 5.1. Letting d = 1, suppose c(x,y) = h(z—1y) for some convex function h: R — R

v

that s bounded below. Then, (Fu_l, F; Y4\ is an optimal transport plan. Hence,
1
Ke(p,v) = inf / Wz —y) dy(z,y) =/ h(FH (u) = FH (u) du. (5.1)
yell(pv) JrRxR 0

Proof. First, if h is a constant function, any transport plan is optimal; then, there is nothing
to prove. Assuming h is not a constant function, for fixed ¢ > 0, take a strictly convex

function A, as in Lemma 5.2. Then, we have

/RXR he(z —y)d(F, ', F ) uMu) = inf /RXR he(x —y) dy(z,y).

yEl(p,v)

This follows by applying Proposition 5.1 to the cost function c.(z,y) = h.(z — y) provided
the optimal transport cost given c. is finite; without finiteness, this is still true as both sides

are simply infinite. Hence, using h < h. < (1 +¢)h + ¢,
1
| rE @ = F ) de= [ b= a5 E W)
0 RxR
< [ he - B
RxR

= inf / he(x —y) dy(z,y)
RxR

yEl(p,v)

<(1+¢) inf /IRRh(x—y)d’y(x,y)+s.

YE(p,v)

As this is true for any € > 0, we have (5.1) and (F, ', F, )4\ is an optimal transport
plan. O
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Recall from Proposition 1.5 that (F, ', F, )4\ is induced by F, ' o F, provided F} is
continuous. Accordingly, not only F, ! o F), is an optimal transport map, but also the
Monge and the Kantorovich problems have the same optimal transport cost. Moreover, by

Proposition 1.8, we can establish uniqueness of optimal transport maps as follows.
Corollary 5.1. Letting d = 1, suppose c(x,y) = h(x—y) for some convex function h: R — R
that is bounded below. If F, is continuous, F, ' o F, is an optimal transport map and thus

M) = ot [ b = T)) dutae) = [ ba = F o Fya)) due) = Kuluo)

TET(M,V) R

If h is strictly convex and the optimal transport cost is finite, F, ' o F,, is a p-almost every-

where unique optimal transport map.

Example 5.1. Note that h(z) = |z| is convex but not strictly convex. Let p = A\ and v
be the Lebesgue measure supported on [1/2,3/2] so that F, ! o T),(z) = 2 + % is an optimal
transport map for the cost function c(z,y) = |z — y|; the optimal transport cost is 1/2.
However, there are other optimal transport maps, e.g.,

r+1 ifz<1,

T(x) =
T if x > 1.

Then, Tyt = v holds and the cost incurred by 7" is also 1/2, which means that 7" is optimal.

5.2 Quadratic cost

We study the case where ¢ is the quadratic cost, i.e., ¢(z,y) = ||z —y||3 for all z,y € R%. In
this special case, all the notions in Definition 3.1 that we used to establish optimality and
(semi-)duality results boil down to well-known concepts in convex analysis. Particularly, as
mentioned in Remark 3.1, if ¢ is the quadratic cost, c-cyclical monotonicity is equivalent to

cyclical monotonicity.

Definition 5.1. A subset II € R? x R? is said to be cyclically monotone if

n

Z(%J/J > Z@u%@))

i=1 i=1

for any n € N, (z1,v41), ..., (Tn,yn) € II, and any permutation o € Perm(n).
Next, we show that c-transform leads to the conjugate.

Definition 5.2. The conjugate of ¢: RY — [—00,00] is a function ¢*: R? — [—o00, o0]
defined by
¢"(y) = sup ({z,9) — o(z)).

z€R4
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For ¢: R — [—00, 00], one can verify that

lyl3 lyllz . . (lle—yll3
W2 ey = W2y e (02— Jll2
y Pw=T - m T #(@)

- (- (5 -e0))

H~||§_¢c: ||-||§_90* (5.2)
2 2 ’ '

showing that c-transform indeed leads to the conjugate. The following proposition is an

In other words,

analogue to Proposition 3.1, collecting some basic properties of the conjugate.
Proposition 5.2. Fiz ¢: RY — [—o0, oq].
(i) ¢* = oo if p(x) = —oo for some x € R
(ii) ¢* = —o0 if ¢ = 0.
Now, suppose ¢: RY — (—o0,00] and ¢ is proper.
(iii) ¢*: R — (—o00,q].
(v) 6(z) + 6"(y) = (x, ) for all (,y) € RY x RY.

Remark 5.2. Note that ¢* in (iii) of Proposition 5.2 might not be proper, i.e., ¢* = oo can

happen. For instance, consider ¢(x) = log |z|.

Next, we characterize c-concave functions. Due to the connection (5.2) of c-transform
and the conjugate, one can deduce that c-concavity is related to ¢ = ¢**, which turns out

to be the usual convexity plus lower semi-continuity.

Definition 5.3. ¢: R? — [—o0, 00] is convex if its epigraph
epi(¢) == {(z,y) € R x Ry > §(2)}

is a convex set.

Remark 5.3. In Definition 5.3, if we consider ¢: R? — (—o0, 0o], convexity is equivalent to
¢(tr + (1 = t)y) < té(x) + (1 —1)o(y)

for any z,y € R? and ¢ € [0, 1].

The following proposition revisits Proposition 3.2 in the context of the conjugate.
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Proposition 5.3. Fir ¢: RY — [—o00, 00].
(i) ¢** < ¢.

(i) ¢ = ¢** if and only if ¢ is convex and lower semi-continuous; in this case, only one of

the following s true:

(1) ¢ = —o0 and ¢* = 0.

(2) ¢ = o0 and ¢* = —c0.

(3) ¢: R4 — (=00, 0] and ¢*: RY — (—o0, 00|, where both ¢ and ¢* are proper.

Now, by virtue of (5.2), one can verify that ¢: R? — [—00, 00] is c-concave if and only if

. 2 . . . .
Lz © is convex and lower semi-continuous, or equivalently

2
|- 113 AR "
> YT\ ¥

Lastly, we show that c-superdifferential leads to the usual subdifferential.
Definition 5.4. The subdifferential of ¢: RY — (—o0,00] at € R? is defined by

Ip(z) = {y e R?: ¢(2) > ¢(x) + (2 —z,y) VzeR}.
An element of d¢(z) is called a subgradient of ¢ at x. The subdifferential of ¢ is defined by

¢ = {(z,y) eR xR : y € d¢(z) } .
Proposition 5.4. If ¢: R — (—o0,00] is proper, ¢(x) + ¢*(y) = (x,y) if and only if
y € 0¢(x). Therefore,
0¢ = {(z,y) € R x R*: p(x) + ¢"(y) = (w,9)}.

Proof. Note that ¢(z) > ¢(z) + (z — z,y) for all z € R? if and only if

(z,9) —d(2) < (m,y) —d(x) VzeR! & ¢ (y) = (z,y) — o(x).

Hence, y € 0¢(z) if and only if ¢*(y) = (x,y) — ¢(z); as this is possible only when ¢(x) < oo,
i.e., z € dom(¢), this is equivalent to ¢(x) + ¢*(y) = (x,y). O

We can now verify the connection between c-superdifferential and the subdifferential.
Suppose ¢: R? — [—00,00) is proper and let ¢ = % — . Then, ¢: R? — (—o00,00] is
proper, and we have

Oetp = {(f,y) e R x R : o(x) + ¢°(y) = IS —QZ/HQ}

= {(z,y) e R x R": ¢(x) + ¢"(y) = (2, 9) }
= a¢7
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where the second equality follows from (5.2) and the last equality is from Proposition 5.4.
Lastly, we present Rockafellar’s result on cyclical monotonicity, which we have mentioned
in Remark 3.1; though we have already proved this in Theorem 3.1, we state this again for

completeness.

Theorem 5.2 (Rockafellar). If I1 C R? x R is cyclically monotone, there exists a proper
conver function ¢: R? — (—oo, 0o] such that I C d¢.

Based on the aforementioned connections, we can derive the optimality result for the

quadratic cost by simply restating Theorem 3.2 using the language of convex analysis.

Theorem 5.3 (Knott-Smith Optimality). Let ¢ be the quadratic cost and suppose

/memw«mam!/m@w@<w.
R4 Rd

For v € I(p,v), the following are equivalent.
(i) ~v is an optimal transport plan.
(i1) supp(y) is cyclically monotone.
(iii) There exists a proper convex function ¢,: R — (—o0, 00] such that supp(y) C O¢,.

Remark 5.4. As c-concavity corresponds to convexity plus lower semi-continuity, we should
have stated (iii) of Theorem 5.3 as follows: there exists a proper, convex, and lower semi-
continuous function ¢,: R? — (—o0o, 00| such that supp(y) C d¢,. That said, as mentioned
in Remark 3.5, we may replace c-concavity with measurability, meaning that we could have
stated (iii) as: there exists a proper measurable function ¢,: R? — (—o0,00] such that

supp(y) C 9¢,. The current (iii) is valid as convexity guarantees measurability.

As pointed out in Corollary 3.1, an important consequence of Theorem 5.3 is that the

support of any optimal transport plan is contained in 0¢,.

Corollary 5.2. Let ¢ be the quadratic cost and suppose

/Wwwww«namt/m@w@<m.
R4 Rd

There exists a proper, convex, and lower semi-continuous function ¢,: R? — (—oo, 0o] such

that supp(vy) C 0¢, holds for any optimal transport plan v € 1I(u, v).

Now, we are ready to prove the most important result in optimal transport theory,
Brenier’s theorem, which states that both the Monge and the Kantorovich problems have

the same optimal transport cost under the quadratic cost, with the optimal transport plan
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being induced by the optimal transport map that is given as the gradient of a convex function.
One can already notice that this convex function has to be ¢, that appears in (iii) of Theorem
5.3. It turns out that such a convex function ¢, must be differentiable almost everywhere,
which makes its d¢, almost the same as the graph of its gradient. Lemma 5.3 formally states
this with the help of the following proposition on the differentiability of convex functions

known as Rademacher’s theorem.

Proposition 5.5. Let ¢: R? — (—o0, 00] be a proper convex function. Then, ¢ is mg-almost
everywhere differentiable on int(dom(¢)), i.e., we can find a Borel set Dy C int(dom(¢))
such that ¢ is differentiable on Dy and mg(int(dom(¢))\Dy) = 0; also, 0p(x) = {Vo(z)}
for x € Dy.

Lemma 5.3. Suppose v € II(u,v) satisfies supp(y) C 0¢ for some proper convex function
¢: RY — (—o0,00|. If uu is absolutely continuous with respect to the Lebesgue measure myg,

then ¢ is p-almost everywhere differentiable and v = (Id, V) 4 p.

Proof. As supp(y) C d¢ C dom(¢) x R,

u(dom (@) = y(dom(g) x BY) = 1.

Also, the boundary of dom(¢) is mg-negligible and thus is u-negligible, which means that
p(int(dom(¢))) = 1. Let Dy be the set of points where ¢ is differentiable. Then, Proposition
5.5 shows that mg(int(dom(¢))\D,) = 0; as p is absolutely continuous with respect to my;,
we have p(int(dom(¢))\Dy) = 0, which means p(Dg) = 1. This proves that ¢ is p-almost
everywhere differentiable. Now, recall that supp(y) C d¢ implies « is concentrated on J¢.
Notice that
0¢ = (09N (Dy x RY)) U (99N ((R'\Dy) x RY)).
A 96\ A

As y(00\A) < Y((RN\Dy) x RY) = p(R4N\Dy) = 0, we can see that v is concentrated on
A. Meanwhile, as d¢(z) = {V¢(x)} for any x € Dy, we have A = {(z,Vo(z)) : x € Dy}.
By letting V¢ = 0 on R¥\ Dy, we have a well-defined measurable map V¢: R? — R? whose
graph satisfies

graph(Ve) = AU {(2,0) : x € R\Dy} = AU ((RY\Dy) x {0}).

Since
Y(RA\Dy) x {0}) < 7((RA\Dy) x RY) = p(R\Dy) = 0,

we conclude that 7 is concentrated on graph(Ve) and thus v = (Id, V@) .u by (ii) of Propo-
sition 1.3. [l
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Theorem 5.4 (Brenier). Let ¢ be the quadratic cost and suppose

/ le|2du(z) < oo and / gl dv(y)

If v is absolutely continuous with respect to the Lebesque measure my, there exists a unique
optimal transport plan v, which satisfies v = (Id, Vg, ) xpt for some proper convex lower semi-
continuous function ¢: R — (—oo, 00| that is p-almost everywhere differentiable. Moreover,

Vo, is a p-almost everywhere unique optimal transport map.

Proof. As c is continuous, optimal transport plans exist by Theorem 2.3. By Corollary 5.2,
we can find a proper convex lower semi-continuous function ¢,: R¢ — (—oo, oo] such that the
support of any optimal transport plan is contained in d¢,. By Lemma 5.3, we conclude that
¢, is p-almost everywhere differentiable and (Id, Vg,)xpu is the unique optimal transport

plan. By Proposition 1.8, V¢, is a p-almost everywhere unique optimal transport map. [J

An immediate consequence of Brenier’s theorem is that when both u, v are absolutely
continuous with respect to the Lebesgue measure, the optimal transport map from p to v

and the optimal transport map from v to u are inverses of each other almost everywhere.

Corollary 5.3. Let ¢ be the quadratic cost and suppose

/ 2|2 du(z) < 00 and / B dv(y) < oo
R4 Rd

Suppose both p and v are absolutely continuous with respect to the Lebesgue measure myg.
Let T}, and T} be optimal transport maps from p to v and from v to p, respectively. Then,

T} o Ty =1d holds p-almost everywhere and T)] o T} = Id holds v-almost everywhere.

Proof. By Theorem 5.4, (Id, T}) 4 € TI(1, v) is the unique optimal transport plan incurring
the optimal cost K.(u,v). Similarly, (Id,7#)xv € II(v, ) is the unique optimal transport
plan incurring the optimal cost K.(v, ). Due to symmetry, K.(u,v) = K.(v, 1), which
implies that (T#,1d)xv € II(p,v) must be an optimal transport plan. Then, uniqueness
implies v := (Id, T%) 4o = (Id, T}!) v Therefore, for any F' € L'(y),

[ Pesi@dne = [ Feagden = [ I ),
Let F(z,y) = llr — T(y) |, then
[ e =Tt o Tl die) =

hence T)' o T)7 = Id holds p-almost everywhere. Similarly, T)7 o T}* = Id holds v-almost

everywhere. O
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A useful way to apply Brenier’s theorem to find the optimal transport map is as follows:
if we find any transport map that happens to be the gradient of a convex function, then it

must be the optimal transport map. Corollary 5.4 states this formally.

Corollary 5.4. Let ¢ be the quadratic cost and suppose

[ leldute) <oc and [ Jyla(y) < oc
R4 Rd

If p is absolutely continuous with respect to the Lebesgue measure mq, any transport map
T € T(u,v) such that T = V¢ holds p-almost everywhere for some proper convex lower
semi-continuous function ¢: R? — (—o0,00] satisfying ¢ € L'(u) is an optimal transport

map.

Proof. Let v = (Id,T)p which is a transport map by Proposition 1.1. We first prove
¢* € L'(v). Note that ¢*(V(x)) = (x,Vo(z)) — ¢(z) for = € Dy,

[ e vopian < [ By [ V0 g,
:/Rd@dﬂ(x)‘f'/ﬂ%d@du(w) < o0.

Therefore, x — ¢*(V(z)) is in L'(p), and thus

16 (Votanianto) = [ 107 @)]dvie

Next, we prove that supp(y) C J¢;this will imply that + is optimal by (iii) of Theorem
5.3, and thus T is an optimal transport map. Note that it suffices to prove v(0¢) =

if this is true, closedness of d¢ implies supp(y) C d¢. As in the proof of Lemma 5.3, let
A={(z,Vo¢(z)) : v € Dy}. Then, v(0¢p\A) = 0, and hence y(0¢) = y(A). Also, recall that

v(graph(Ve)\A) = y((R"\Dy) x {0}) =0,

hence y(graph(Ve)) = v(A). Meanwhile, for A := {z € R? : T(z) = V¢(z)}, we have
wu(A) =1, which implies

v(graph(T') N graph(Ve)) = v{(z,T(x)) : x € A} > p(A) = 1.

Lastly, v(graph(7")) = 1 by construction, which implies vy(graph(V¢)) = 1. In summary,

7(0¢) = 7(A) = v(graph(V¢)) =
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Example 5.2 (Gaussian Distributions). Let p and v be the Gaussian distributions
N(01,%1) and N(f0y,%5), respectively. We first consider linear transport maps, that is,
T(z) = Az + b for A € R4 and b € R? such that Af; +b = 0 and AX; AT = 35, Now,
let us find a linear transport map that incurs the smallest transport cost, which can be
formulated as

min | A(z — 6,) + 0y — |2 du(z) .
AGRdXd R4
AT1AT =5, ~- d

=:Q(A)
Then, one can verify that

Q(A) = tr(AS AT) + [|6a]f5 + tr(31) + [|61]]5 — 2(tr(AT) + (61, 62)).
Therefore, the problem is equivalent to

max  tr(AX).
AERdXd
AT AT =%,

Assuming 3; is invertible, the above problem is equivalent to

max tr(B),
BERdXd

BBT=x1/?5,x1/2

where we change the variable by letting B = 2}/ QAEi/ 2, Using the spectral decomposition,

one can verify that the maximum is attained by B = (£1/25,51/%)1/2. Therefore,
2 (P2 P (e — 0)) + 6,
is a linear transport map that incurs the smallest transport cost, where the transport cost is
QB m ) 2 ) = 01 = 65)3 + (T + Tp — 22PN
Importantly, this linear map is the gradient of the following convex quadratic function:

1 _ _
O(x) = G{r — 00, 5 (P51 28 @ - 60) + (6, ),

where the convexity of ¢ follows as 37 /*(X1/25,51/%)1/25 /2 is positive semidefinite. By
Corollary 5.4, we conclude that this linear transport map is in fact the optimal transport

map. By symmetry, if 35 is invertible,

z e 5, (28 2y )28 VP (- 6,) + 6,
is the optimal transport map from v to p. Its inverse map

v BP0 5728 P (@ - ) + 0y
is the optimal transport map from u to v, where one can verify

DDA OIED 300 S WV SIS S O DD 39 3o RV Smerc
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Now, we revisit Corollaries 3.1 and 3.2.

Corollary 5.5. Let ¢ be the quadratic cost and suppose

2 2
2 Rd 2

R4

(i) There exists a proper, conver, and lower semi-continuous function ¢,: RY — (—o0, o0]
such that (¢,, ¢%) € L'(u) x L' (v) and

: lz = yli3 o B )
inf ——dy(z,y) =M Godp ¢, dv.
YE(1,v) JRd xR 2 Rd Rd

Also, supp(7y) C 0¢, holds for any optimal transport plan ~v € Il(u, v).

(ii) The following semi-duality holds:

sup [ (o) dyfaeny) = ( [ [ qs*du), (5.3)
yEl(p,v) JREXRE oS \Jx Y

where S is the collection of all proper convexr and lower semi-continuous functions
¢: RY — (—o00,00] such that (¢, ¢*) € L' (n) x L*(v).

(iii) The following duality holds:

sup / (x,y) dy(z,y) inf (/ odu+ / wdy) : (5.4)
~YEI(p,v) JRIxRE (451/’ )ED

D is the collection of all pairs (¢,) € L' (u) x L' (v) such that ¢(x) + ¥(y) > (x,y)
for all (x,y) € RY x RY,

In particular, ¢, of (i) satisfies ¢, € S and (Po, ¢%) € D which are the minimizers of the
right-hand sides of (5.3) and (5.4), respectively.

Now, it should be clear that if u is absolutely continuous with respect to the Lebesgue

measure, then ¢, in Corollary 5.5 is the same as ¢, in Theorem 5.4.
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6 Wasserstein Distance

One of the most important results of optimal transport theory is that optimal transport cost
between two probability measures defines a distance. More concretely, given a separable
metric space (X, p), we consider the Kantorovich problem between p,v € (X)), where the
cost function is ¢(x, y) = p(x, y)P for some fixed exponent p € [1,00). The resulting minimum
of the Kantorovich problem gives rise to the Wasserstein distance. This section rigorously

derives metric and topological properties of the Wasserstein distance.

Settings Unless otherwise stated, (X, p) is a separable metric space and p € [1,00) is a

fixed exponent.

6.1 Basic properties

Definition 6.1. The Wasserstein distance of order p between p, v € & (X) is defined by

wyno) = (it [ XXp<x,y>pdv<x,y>)l/p. (6.1)

Y€ (p,v)

Remark 6.1 (Geometric Interpretation). As I1(0;,d,) = {d(,)}, one can verify that
Wy(0z,0,) = p(z,y) for any z,y € X. Roughly speaking, this implies that W, measures a
distance between two elements of &2(X) by taking into account the distance between their
supports under the ground metric p. In other words, W, utilizes a metric structure of the
underlying space X' to define a distance on &?(X’). Though this seems very natural, other

distances or divergences on (X)) lack such a geometry perspective.

In practice, we mostly focus on the Euclidean space case where X = R? and p is the

Euclidean distance.

Example 6.1. Recall that h(z) = |z|P is a convex function on R for any p € [1,00). Hence,
Theorem 5.1 shows that

Wy v) = ( / F ) - Ff(u)\ﬂdu)l/p Vv € P(R) (6.2

where F), and F), denote the distribution functions of p and v, respectively. Using Fubini’s

theorem, one can verify that

Wilw) = [ 1Fide) = o)l da,
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In Example 6.1, note that W, can be infinite as mentioned in the proof of Theorem
5.1. One way to ensure finiteness of W), is to utilize a moment condition, for instance, (6.2)

becomes finite provided

1 1
/ |Fu_1(u)|p du = / |z|P dp(z) < 0o and / |F () [P du = / |z|? dv(x) < oc.
0 R 0 R

In other words, if both p and v have finite p-th moments, W, (u, v) < oo is guaranteed. We

can extend such a moment condition to the general case as follows.

Definition 6.2. Define &,(X) as a subset of &(X’) having finite p-th moments, that is,

2,2) = {ne 2@ [ ol duta) < oo
for some zg € X.

Remark 6.2. In Definition 6.2, one can verify that #2,(X) is independent of the choice of

T using the triangle inequality. Also, note that

/mmwzwm%»
X

Moreover, one can verify that &2,(X) O Z,(X) provided p < ¢. In other words, having

some particular moment implies existence of all the lower moments.
We have an ordering of Wasserstein distances as follows.
Proposition 6.1. Let p,q € [1,00) be two exponents such that p < q. Then,
(i) W, < W,
(ii) W, < WP 'diam(X)1-P/4,
Remark 6.3. Recall from Theorem 4.2 that if u,v € £21(X) are tight,

Wi(p,v) = S (/Xsodu—/chb), (6.3)

llellLip<1

where we define for any ¢: X — R,
lpllip = sup
a7y

In short, W is the supremum of [, ¢ du — [, ¢ dv over all 1-Lipschitz functions ¢ on X
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6.2 Metric properties

We derive metric properties of the Wasserstein distance. First, note that W, is symmetric
by definition. Next, we show that p = v if and only if W, (u,v) = 0. The “if” part requires
tightness of u, v.

Proposition 6.2. W,(u, 1) =0 for any p € 2(X). If p,v € P(X) are tight, W,(p,v) =0

implies p = v.

Proof. Wy,(p, 1) = 0 holds because (Id,1d)xp € II(p, 1) by Proposition 1.4, which gives

Winp < [

XXX

p(%y)”d(ldald)#ﬂ(fc,y):/Xp(xal’)”du(x) = 0.

If p,v € P(X) are tight, we can find an optimal transport plan v € II(u, v) with respect to
the cost p? by Theorem 2.3, that is, v satisfies

pPdy =W (pu,v) = 0.
XxY

Hence, v is concentrated on the graph of Id: X — X. By Proposition 1.3, we conclude
v = (Id, Id)4p, and hence v = Idgu = p. O

Remark 6.4. For any p € Z(X), one can verify that (Id,Id)xu is the unique optimal
transport plan from g to itself for a cost function p?. To see this, suppose v € T(u, )
is an optimal transport plan. As the optimal cost is W2 (u, ) = 0, we can see that v is
concentrated on {(z,y) € X x X : x =y}, the graph of a transport map Id: X — X from pu
to itself. By Proposition 1.3, we conclude v = (Id, Id) 4 p.

Next, we prove the triangle inequality. Given three elements g, pio, 3 € Z2(X), the
main idea is to invoke the gluing technique (Lemma 1.3) to construct a probability measure
['e (X x X x X) such that

(i) the three marginal measures of I' are py, po, pig in turn,
(ii) (Pr2)4l" is an optimal transport plan from iy to po,
(ili) (Pa3)xI" is an optimal transport plan from ps to ps,

where P,;(z1,22,23) = (z;,z;) for all 4,7 € {1,2,3} such that i # j and all x1, x5, 23 € X.
Then, the proof follows thanks to the Minkowski inequality.

Proposition 6.3. If (X, p) is a complete separable metric space,
Wplpis ps) < Wplp, p2) + Wolpa, ps) - Vi, po, iz € B(X).
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Proof. Due to tightness, we can find yi5 € (1, p12) and 723 € II(12, pg) such that

Wﬁ(ﬂlaﬂz) :/ p’dyiz  and Wf(/iza/ﬁs) :/ PP d7yas.
XXX XXX

Using Lemma 1.3, we can find I' € (X' x X' x X) such that v12 = (P12) 2" and o3 = (Pa3) 21
note that this implies y13 := (Pi3)4I" € II(uq, u3). Then,

1/p
xla $3 d713>

1/p
(/ :E17x3)p d,)/)
AXXXX
1/p
</ x17$2)+[7($27553))pd7>
AXXXXX
1/p
</ wlva ) + (/ 'TQ;J:?)) d7>
AXXXXX AXXXX
1/p
$1,5E2 pd%2> </ $2,$3 pd723)
XXX XXX

Wi (p1, po) + Wy (2, p3).

M17M3

IN I

IN

Il
T

]

Therefore, if (X, p) is a complete separable metric space, W, satisfies the triangle in-
equality; also, since all elements of (X)) are tight (Remark 2.4), Proposition 6.2 holds.
Accordingly, by restricting W, to Z2,(X), we conclude that W), is indeed a metric.

Corollary 6.1. If (X,p) is a complete separable metric space, W, is a metric on Py(X).
We call the metric space (2,,W,) the Wasserstein space of order p.

Example 6.2. Suppose X = R? is equipped with the standard Euclidean distance. As in
Example 5.2, let 1 and v be the Gaussian distributions N (61, %;) and N (6, ¥5), respectively,

where we assume 3J; is invertible. We have seen in Example 5.2 that
T(z) = S3(SV20,VHV28 2 (2 — 0,) + 6, Vo € R
is the unique optimal transport map under the quadratic cost. Therefore,

Winv) = | [T() = af dp(x) = 6, = 6,15 + (21 + 22 — 2217 mm?)12),

25(5;,22)2

where [ is often called the Bures metric. One can show that
CIOM AR PHEE
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where || - || denote the Frobenius norm. To see this, it suffices to observe that
(S8 7) < b5 %)12).

In fact, letting S(z) = E;/2Z;1/2<£€ — 1) + 05, we can verify that S is a transport map from

4 to v and its transport cost satisfies

[ 1S(@) = al* du(@) = 16 = 613 + 151" - 2

6.3 Topological properties of the Wasserstein space

Theorem 6.1. If (X, p) is a complete separable metric space, the following are equivalent

for a sequence (pn)nen and p in Pp(X):
(1) limy, o0 Wy (pin, ) = 0.

(1) (fn)nen converges weakly to p and

lim [ p(x,2z0)? du, = /p(x, zo)Pdu Vry € X. (6.4)

n—oo

(13i) (pn)nen converges weakly to p and

lim lim sup/ plx,zo)P dp, =0 Vg € X. (6.5)
p(z,x0)>R

R—=oo  pseo

Proof. Suppose (i) holds. Then, lim, .o Wi(i,, ) = 0 as well by Proposition 6.1. As

discussed in Remark 6.3, for any 1-Lipschitz function ¢ on X,

/s@dun—/wdu‘ < Wi(pn, ) Vn €N,
X X

which implies lim,, o [ P du, = | +®@du. One can verify that this must hold for any
bounded Lipschitz ¢, which implies that (i, )nen converges weakly to p by Theorem 2.1.
Also, for any zy € X, note that

i [ pla.20) dpa) = T Wy 6y = Wyl = [ plaan) d

Suppose (ii) holds. For any n € N and R > 0, define

Mn:/p(x,:vo)pd,un(x) and MmR:/ p(x,z0)? N RP dpy,(z).
x X

For any R > 0, weak convergence of (i, )nen to p implies

lim M, r = / p(x,z0)? N RP du(z) =: Mpg.
X

n—oo

59



Also, letting Cr = {x € X : p(z,z0) > R},
/ P(l"a :BO)p d“n(x) = Mn - Mn,R + Rp:un(cR)-
p(CE,-’EO)ZR

Therefore, using (6.4),

n—oo n—oo

lim sup/ p(x, xo)? dpp () = / p(z, x0)P dp(z) — Mp + RP limsup p1,,(Cr)
p(x,z0)>R X

< /X pl, 30) du(x) — My + BPp(Cr)

- / ol o) dulx),
p(z,z0)>R

where the inequality is due to Theorem 2.1 as Cy is a closed set. Note that the dominated

convergence theorem implies

fim [ plm) dute) =0,
R—o0 p($,$0)ZR

hence (6.5) holds. Suppose (iii) holds. For each n € N, let v, be an optimal transport plan
between p, and p. Then, (y,)nen converges weakly to v = (Id, Id)xp, the unique optimal
transport plan from g to itself for a cost function p? by Theorem 4.1. Now, fix o € X and
divide X x X into three regions:

S1={(z,y) € X x X : p(z,y) < R},
Sy ={(z,y) € X x X :p(z,y) = R and p(z,20) > p(y, z0)},
Sy ={(z,y) € X x X :p(z,y) > R and p(x, ) < p(y,z0)}.

Note that p = p A R on S;. Also, p(z,y) < 2p(x,z0) and p(z,y) < 2p(y,xo) on Sy and S
respectively. Hence,

p(x7y) < 2p(x7x0)1{p(:v,$o)2R/2} V(l’,y) € 527
p(as, y) < 2p(y7 xO)[{p(y,xo)zR/Z} V(x,y) € SS-

Therefore, for each n € N.

pp dfyn S 2p/ p(x, xO)pI{p(x,mo)zR/Q} d’}/n(l’, y) = 2p/ p(l‘, IO)p dﬂn(‘r)a
Sa XxX p(z,x0)>R/2
/ pPdyn < 2° / P, 20) Lip,ao)>R/2r dVn(T, y) = 2° / p(y, zo)” du(y),
S3 xx p(y,20)2R/2
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hence letting Cr/o = {x € X : p(x,x0) > R/2},

W (i, )P = PP dyn
XxX
= [ pPdw+ | pPPdyw+ [ pPdy,
Sl 52 53
< / P’ A RP dy, + 2p/ p(x, z0)? dpin () + 2”/ p(y, o)” dp(y).
XXX CR/2 C’R/2

As (Yn)nen converges weakly to v = (Id,Id)xp which is concentrated on {(z,y) € X x X :
p(z,y) = 0},

lim pp/\de%:/ PP NRPdy =0.

N0 Jxxx XxX

Therefore,

lim sup W, (ftn, 1)? < 2P lim sup/ plx, x0)? dpn () + 2p/ p(y, z0)? du(y),
Cry2

n—oo n—00 Cr/2

where the right-hand side vanishes as R — oo due to (6.5) and the dominated convergence
theorem. ]
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7 Useful Techniques and Their Applications

Settings Throughout this section, (X, A, 1) and (Y, B, v) denote probability spaces unless

otherwise stated.

7.1 Transport plans under mappings

We introduce a useful technique to characterize transport plans under measurable mappings;
see Lemma 3.12 of [AG13].

Proposition 7.1. Let (Z,C) and (W, D) be measurable spaces. Suppose f: X — Z and

g: Y — W are measurable. Define (f,g): X x Y — Z xW as (f,9)(x,y) = (f(x),9(y)).
Assume X and ) are Polish spaces, A = B(X), and B = B(Y). For any I' € (fap, g4v),
there exists v € Il(p,v) such that (f,g)ay =T.

Proof. Note that a probability measure ) = (Id, f)4u on X x Z satisfies vV € T (p, fup).
By Theorem 1.1, we can find a collection {7,51’ : z € Z} of probability measures on X such
that

1080 = [ [ Koy I @afantz) v, € A
ZJX

Similarly, for v := (Id, g)4v € II(v, g4v) on ¥ x W, we can find a collection {%(UQ) tw e W}

of probability measures on ) such that
7(2)(52) = / / Iy w)ess) dvff)(y)dg#y(w) VS, € B&D.
wJYy
Now, we define ~ as follows:
1) = [ AP (S)dl(w) VS € A B,
ZxW
or more generally, for any measurable h: X x Y — [0, o],

X A = X (1) X (2) Z, W
/Xxyh( y) dy(z,y) /sz/mh( yy) dys (o) dry (y) T (2, w)

To see v € TI(u, v), note that for any A € A,

W(Axy):/

AOA) ALz w) = [ A0(4)dfprlz) =14 x 2) = ().
ZxW Z

Similarly, one can prove that (X x B) = v(B) for any B € B. Next, we prove that
(f,9)x#y =T. Note that a collection ( f#vgl))ze z amounts to conditional probability measures
of (f,1d)xyV given the marginal fyu on the second coordinate. As (f,1d)xv™ = (£, f)ui,
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the collection ( f#’ygl))ze z must coincide fgp-almost everywhere with (9,).cz due to unique-

ness of disintegration. Therefore, for any measurable H: Z x W — [0, o0},

HA(f,g)4 = H(f(x),g(y))dv(z,y)
ZxW Xx)Y

- / H(f(2), 9(y)) drV (2)dr2 (y) dT(z, w)
ZxW JXXY

= / H(Z w') df gy (2))dgey? (w') dD(z, w)
ZxXW J ZxW

_ / H( ') d6.(+')d6,(w) AT (2, w)
ZxW J ZxW

= H(z,w)dl'(z,w).
ZxXW

]

Remark 7.1. Suppose we know marginal distributions of (X,Y). Then, given two maps
f and g, we know the joint distribution of (f(X),g(Y)). The preceding result tells that
we can find a joint distribution of (X,Y") in accordance with this set of information. In
particular, one possibility is to assume X and Y are independent given f(X) and g(Y), so
that X, Y|f(X),g(Y) is a tuple of two independent distributions X|f(X) and Y|g(Y").

Corollary 7.1. Let (Z,C) and (W,D) be measurable spaces. Suppose f: X — Z and
g: Y — W are measurable. Define (f,g): X XY — Z xW as (f,9)(z,y) = (f(z),9(y)).

(i) For any transport plan v € Il(u,v), a probability measure (f,g)gy on Z2 x W is a

transport plan between fup and guv, and hence
{(f,9)ev v € W, v)} CI(fap, gpv). (7.1)

(i) Given any cost function ¢ on Z x W,

inf /2xw c(z,w)dl'(z,w) < inf [vxyc(f(x),g(z))dv(x,y). (7.2)

TEll(fpp,94v) vell(pv)
If X and Y are Polish spaces, A = B(X), and B = B(Y), both (7.1) and (7.2) are equalities:

{(fs9)py : v € W, v)} =T fap, guv)

and

inf /ch(z,w)df’(z,w): inf /Xyc(f(x),g(z))dfy(x,y).

Pell(fur.g4v) yEIl(p,v)
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Remark 7.2. We may interpret this results as follows: if we pushforward p and v by
measurable maps, there are more transport plans between the image measures. Accordingly,
the optimal transport cost from fup to gxv given a cost function c is smaller than the

optimal transport cost from p to v given a cost function co (f, g), i.e., (z,y) — c(f(x),9(y)).

Proposition 7.2. Let R € SO(3) be a rotation matriz whose rotation angle is 6 € (0, ).
Then, for any p € P (R3),

Wy Roro) < (25in(0/2)) - [ Jall o).

Proof. Let P: R?® — R3 be a projection to the hyperplane orthogonal to the rotation axis.
Then, for any = € R3,

|x — Rx||2 = 2sin(0/2)||Px||2 < 2sin(6/2) - ||z||2-

Due to Corollary 7.1 and Proposition 1.4,

Wy o) = int [ o= Rylgdn(ey
R3xR3

yE(p,p)

< [ lle = Relldute) (- (4. Td)pp € T 0)

< (2sin(6/2))" - / el dp(z).
]

Proposition 7.3. Let (X,px) and (Z,pz) be separable metric spaces. Suppose a map
f: X — Z is L-Lipschitz, i.e., pz(f(z), f(y)) < L - px(z,y) for all z,y € X. Then,
for any p,v € P(X),

Wil fam, fv) < L - Wy(p,v),
where W,’s on the left-hand side and right-hand side denote the Wasserstein distances on
P(Z) and P (X), respectively.

Proof. Due to Corollary 7.1 and Lipschitzness of f,

WP(fapis for) = inf / pz(zn, ) AT (21, 29)
ZXZ

TEeTl(fyp, fuv)

= inf pz(f (1), f(22)) dy(z1, 22)

yel(pv) Jxxx

< LP. inf / px (w1, 22)P dy(z1, 22)
yell(pv) Jyxx

= L7 - Wl (u,v).
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Proposition 7.4. Fiz k,d € N and U € R*4. Define L: R? — R* as L(x) = Uz. Then,
for any p,v € 2(R?),
Wi (Lyp, Lyv) < [|U][2 - Wp(p, v),

where ||U||2 denotes the spectral norm of U.

Proof. Since
IL() = L)l = 1T (z = )lla < U2+ |2 = yll2 Yo,y € R,

Proposition 7.3 implies W,((Ly)xp, (L) gv) < ||U||2 - Wy(p, v). O

7.2 'Transport all but the common part

Lemma 7.1. Suppose X =Y and A = B. Consider the Jordan decomposition of a signed
measure f—v = (u—v)y —(u—v)_. Let uAv:=p—(u—v)y and § = (u—v)(X). Then,

3= (1) (e A V) + (0= v)s ® (= v)- € T v).

Furthermore, suppose A == {(z,x) : v € X} € A®A. Then, the two measures (Id, Id)(uAv)
and (n —v): ® (u— v)_ are mutually singular; more precisely, they are concentrated on A

and (X x X)\A, respectively. In particular,
(X x X)N\A) = 3.
Proof. Verify v(A x X) = u(A) and v(X x B) = v(B). Also,
(I, 1) (e A V) (X x &) = (I, Id) s (1 A ) (A) = (A v)(X) =1 — 6.

As (u—v)y L (u—v)_, there are disjoint sets £, F' € A such that EUF = X, (u—v)(F) =0,
and (u —v)_(E) = 0. Hence,

(h=v)1@(p=v)(A) = (p=v)+ @(p=v) (AN(EX X))+ (p—v)s @(p—v)-(AN(F x X)).

By definition,

(h=v)+ @ (p—v)-(AN(Ex X)) < (p—v)4 @ (p—v)A{(z,z):z € E}
S =v)+®(p—v)-(X X E)
= (n—v)-(E)

Similarly, (u—v); ® (u—v)_-(AN(F x X)) = 0. Therefore, (u—v); @ (p—v)_(A)=0. O
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Having a particular transport plan is useful for deriving upper bounds on the Wasserstein
distance. The following result upper bounds the Wasserstein distance W, by the total variant

distance; see Proposition 7.10 of [Vil03] for the proof.

Proposition 7.5. Let (X, p) be a separable metric space. For y,v € P(X),

Wm0 <27 [ plaao) dln = vl(o)
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