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Preface Due to its wide range of applications in various fields, optimal transport has at-

tracted much attention from multiple disciplines. Thanks to this, the boundary of optimal

transport theory is continuously expanding, leading to a variety of perspectives and ap-

proaches. Those who wish to learn the theory of optimal transport for the first time are

recommended to consult the following excellent textbooks.

• [Vil03] Topics in Optimal Transportation (2003)

• [AGS05] Gradient Flows: In Metric Spaces and in the Space of Probability Measures

(2005)

• [Vil09] Optimal Transport: Old and New (2009)

• [San15] Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,

and Modeling (2015)

• [ABS21] Lectures on Optimal Transport (2021)

• [FG21] An Invitation to Optimal Transport, Wasserstein Distances, and Gradient

Flows (2021)

Depending on the reader’s background and interest, preferences may vary. In any case,

however, optimal transport theory is a vast and deep subject that requires a solid foundation

in mathematical analysis. The goal of this note is to provide a concise and rigorous summary

of the essential results in optimal transport theory which I believe are foundational for further

study. The target audience is expected to be familiar with measure theory, topology, and

convex analysis. Although applied researchers may be interested in more practical aspects

of optimal transport, it would be beneficial to try—at least once—to understand the core

mathematical foundations.
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Notation and Preliminaries

General notation For n ∈ N, define [n] = {1, . . . , n} and let Perm(n) denote the collection

of all permutations of [n]. For a, b ∈ [−∞,∞], let a ∨ b = max(a, b) and a ∧ b = min(a, b).

For a map T : X → Y between any sets X and Y , let graph(T ) denote its graph, i.e.,

graph(T ) = {(x, T (x)) : x ∈ X} ⊂ X × Y .

Any function taking values in [−∞,∞] is said to be proper if it is not identically ∞ or −∞.

Measure and integration Let (X ,A, µ) be a measure space. We say µ is concentrated

on A ∈ A if µ(X\A) = 0. For any measurable function f : X → [−∞,∞],∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ if

∫
X
f+ dµ <∞ or

∫
X
f− dµ <∞,

where f+ = f ∨ 0 and f− = (−f) ∨ 0. We write f ∈ L1(µ) if
∫
X |f | dµ < ∞. Let δx

denote the Dirac measure concentrated at x ∈ X , i.e., δx(A) = 1 if x ∈ A, and δx(A) = 0 if

x /∈ A. Lastly, we call µ a probability measure if µ(X ) = 1; in this case, we call (X ,A, µ) a
probability space.

Pushforward measure Let (X ,A, µ) be a measure space and let (Y ,B) be a measurable

space. Given a measurable map T : X → Y , let T#µ denote the pushforward measure of µ

by T , namely, T#µ is a measure on (Y ,B) such that

T#µ(B) = µ{x ∈ X : T (x) ∈ B} ∀B ∈ B.

In this case, for any measurable f : Y → [0,∞],∫
X
f ◦ T dµ =

∫
Y
f dν.

Topology A topological space is said to be separable if it has a countable dense subset.

The product of two separable spaces is separable. A topological space is said to be metrizable

if there is a metric that generates the topology; we call such a metric a compatible metric.

We call a metrizable topological space simply a metrizable space. A topological space is

called a Polish space if it is separable and metrizable by a complete metric. The product of

two Polish spaces is a Polish space. A subset of a Polish space is a Polish space if and only

if it is a Gδ set; see [Coh13]. For a topological space X , let C(X ) denote the collection of all

real-valued continuous functions on X , and let Cb(X ) denote the collection of all bounded

real-valued continuous functions on X . For a metrizable space X and its compatible metric

ρ, let BL(X , ρ) denote the collection of all bounded Lipschitz functions on X .
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Topology and measures For a topological space X , let B(X ) denote the Borel σ-algebra

on X , and let P(X ) denote the collection of all Borel probability measures on X , i.e.,

probability measures defined on (X ,B(X )).

Support of a measure Let X be a topological space. The support of µ ∈ P(X ) is

defined by

supp(µ) = {x ∈ X : µ(U) > 0 ∀open neighborhood U of x}.

By definition, the support of µ ∈ P(X ) satisfies

X\supp(µ) =
⋃

G is open
µ(G)=0

G ⇔ supp(µ) =
⋂

F is closed
µ(F )=1

F.

Hence, supp(µ) is a closed set. If X is second-countable, e.g., X is separable and metrizable,

continuity of measures ensures µ(supp(µ)) = 1, which implies that supp(µ) is the smallest

closed set having the total mass 1; equivalently, X\supp(µ) is the largest open set having

zero mass.

Euclidean spaces A Euclidean space is always equipped with the standard topology and

its subset is equipped with the relative topology inherits from that. For d ∈ N, let md denote

the Lebesgue measure on the Borel σ-algebra on Rd; the symbol dmd(x) of integration is

simply denoted as dx. For d = 1, let λ denote the restriction of m1 to the unit interval [0, 1]

so that λ ∈ P([0, 1]).
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1 Theoretical Foundations of Optimal Transport

Optimal transport theory concerns how to transport one probability measure to another with

minimal cost. We introduce two notions of transport—transport maps and plans—and the

corresponding notions of cost. These notions lead to two optimal transport problems, the

Monge problem and the Kantorovich problem, which consist in finding transport maps and

plans incurring the smallest cost, respectively. We show that the latter is a relaxed version

of the former and highlight important aspects of their connections. Moreover, we provide a

probabilistic interpretation of transport, which is useful for understanding intricate measure-

theoretic formulations. Lastly, we introduce two essential tools in optimal transport theory

called disintegration and gluing techniques, which will be used in the subsequent sections.

Settings Throughout this section, (X ,A, µ) and (Y ,B, ν) denote probability spaces unless

otherwise stated.

1.1 Transport maps and the Monge problem

We first study a notion of transport induced by a map. Recall that any measurable map

T : X → Y induces a probability measure T#µ on (Y ,B), which we call the pushforward

measure of µ by T . Roughly speaking, the pushforward measure is obtained by transporting

mass consisting of µ via T . As a simple example, let X = Y = R2, A = B = B(R2), and

µ = 1
m

∑m
i=1 δxi . Then, T#µ = 1

m

∑m
i=1 δT (xi), which amounts to transporting the mass 1

m
at

each location xi to another site T (xi) on the plane. In summary, a map gives rise to a notion

of transport via pushforward measures. Using this, we define a transport map between two

probability measures as follows.

Definition 1.1. A measurable map T : X → Y is called a transport map from µ to ν if

T#µ = ν. The collection of all transport maps from µ to ν is denoted as T (µ, ν).

Next, we define a notion of cost associated with transport maps. Recall from the afore-

mentioned example with µ = 1
m

∑m
i=1 δxi on the plane, that a map T transports the mass 1

m

at location xi to T (xi). We may price such transport by defining a unit cost, say the distance

∥xi−T (xi)∥2, and multiplying it by the mass 1
m
; then, the total cost is 1

m

∑m
i=1 ∥xi−T (xi)∥2.

To apply this idea to the abstract setting, we view the unit cost incurred by x 7→ T (x) as

any quantity depending on the source location x and the destination T (x) of the transport.

For this reason, we consider a function c define on X ×Y and define the unit cost associated

with x 7→ T (x) as c(x, T (x)).
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Definition 1.2. We call c : X × Y → (−∞,∞] a cost function if it is bounded below and

measurable with respect to the product σ-algebra A⊗ B.1

Given a cost function c, by integrating the unit cost with respect to the source measure

µ, we obtain the total transport cost incurred by a map T as follows:

cost(T ) =

∫
X
c(x, T (x)) dµ(x).

The optimal transport problem consists in finding a transport map that achieves the smallest

transport cost, i.e., minimizing cost(T ) over T ∈ T (µ, ν). This problem is attributed to

Gaspard Monge who considered such a formulation to find the most economical way to

transport the soil from the ground to several construction sites [Mon81].

Definition 1.3 (Monge Problem). Given a cost function c, suppose we associate each

transport map T ∈ T (µ, ν) with the cost∫
X
c(x, T (x)) dµ(x).

The Monge problem seeks a transport map incurring the smallest cost; any element in

argmin
T∈T (µ,ν)

∫
X
c(x, T (x)) dµ(x)

is called an optimal transport map. The optimal transport cost of the Monge problem is

Mc(µ, ν) = inf
T∈T (µ,ν)

∫
X
c(x, T (x)) dµ(x) ∈ (−∞,∞].

From a purely mathematical perspective, the Monge problem is simply a minimization

of some function over T (µ, ν) and the so-called ‘optimality’ is used to refer to the minima.

Depending on the situation, such optimality may be related to a desirable property.

Example 1.1. Suppose X = Y = [0, 1] and A = B = B([0, 1]). Let µ = ν be the Lebesgue

measure on [0, 1]. Clearly, the identity map Id from [0, 1] to [0, 1] is a transport map from µ to

ν. In fact, there are many other transport maps that are highly nontrivial and complicated.

For instance, define T : [0, 1] → [0, 1] as T (x) = |2x − 1|, let T1 = T , and recursively define

Tn+1 = T ◦ Tn for n ∈ N. Then, Tn ∈ T (µ, ν) for every n ∈ N. Also, for each n ∈ N, define
Sn : [0, 1] → [0, 1] as follows:

Sn(x) =


(
x− k−1

2n

)
+
(
1− k

2n

)
x ∈

(
k−1
2n
, k
2n

)
for k = 1, . . . , 2n,

1− x x ∈
{
0, 1

2n
, . . . , 2

n−1
2n

, 1
}
.

1We require c to be bounded below to prevent any integrability issues.
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Then, one can verify that (Sn)#µ = ν holds; hence, Sn ∈ T (µ, ν) for all n ∈ N. Now, let

c(x, y) = |x− y|. Then, the identity map Id incurs the zero transport cost, whereas Tn and

Sn incur the positive transport cost. In other words, Id is an optimal transport map, while

Tn and Sn are not. As such, solving the Monge problem leads to the most intuitive transport

map Id between two probability measures.

1

13
4

2
4

1
4

(a) T2

1

3
4

2
4

1
4

13
4

2
4

1
4

(b) S2

Figure 1: T2 and S2 of Example 1.1.

Last but not least, we mention that the Monge problem may be infeasible, that is,

T (µ, ν) = ∅. In other words, there is no transport map between µ and ν. In this case, by

convention, we often say the optimal transport cost of the Monge problem is ∞.

Example 1.2. Suppose µ = δx and ν = 1
2
(δy1+δy2) for some x ∈ X and y1, y2 ∈ Y , assuming

{x} ∈ A and {y1}, {y2} ∈ B. For any measurable map T : X → Y , the pushforward measure

T#µ = δT (x) is supported on a singleton {T (x)}, while the support of ν consists of two points.

Hence, T#µ ̸= ν for any T .

1.2 Transport plans and the Kantorovich problem

As shown in Example 1.2, transport maps cannot split mass; if µ = δx, the total mass 1

at x ∈ X is transported to T (x), resulting in the pushforward measure T#µ = δT (x) that

also has the total mass placed at one site T (x). This is because a map T always maps each

location x ∈ X to one location T (x) ∈ Y , thereby prohibiting mass at x from splitting into

multiple destinations.

We introduce a notion of transport that permits multiple destinations. The key object is

a transport plan which records the amount of mass to be transported from x to y for any pair

(x, y) ∈ X × Y . First, consider a simple case where µ = 1
m

∑m
i=1 δxi and ν = 1

n

∑n
j=1 δyj for
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some x1, . . . , xm ∈ X and y1, . . . , yn ∈ Y with {x1}, . . . , {xn} ∈ A and {y1}, . . . , {ym} ∈ B.
Suppose we transport mass from µ to ν by specifying the amount of mass to transport from

xi to yj, say Pij ≥ 0, for any pair (i, j) ∈ [m]× [n]. Then, any admissible transport plan is

represented by the following constraint on Pij’s:

n∑
j=1

Pij =
1

m
∀i ∈ [m] and

m∑
i=1

Pij =
1

n
∀j ∈ [n].

In other words, we can plan transport by simply determining a quantity (Pij) of mass to

transport from xi to yj for any pair (i, j) ∈ [m] × [n]. Now, let us imagine m,n → ∞ to

generalize this concept to general µ and ν. As m,n → ∞, the quantities (Pij) become ap-

proximations of the amount of mass to transport from any x ∈ X to any y ∈ Y . Accordingly,

we can specify the amount of total mass to transport from a local area dx ∈ A to another

local area dy ∈ B via a measure γ on the product space (X × Y ,A ⊗ B), i.e., γ(dx × dy)

denotes the total mass to transport from dx to dy. In other words, now the transport plan

is a measure recording the amount of mass to be transported from any local area dx ∈ A to

another local area dy ∈ B. As discussed earlier, any admissible transport plan should satisfy

some constraint; in this case, γ(dx× Y) is the total mass transported from a local area dx,

which must be µ(dx), and similarly γ(X × dy) = ν(dy).

Definition 1.4. A probability measure γ on the product space (X × Y ,A⊗ B) is called a

transport plan from µ to ν if

γ(A× Y) = µ(A) ∀A ∈ A and γ(X ×B) = ν(B) ∀B ∈ B.

The collection of all transport plans from µ to ν is denoted as Π(µ, ν).

Definition 1.5 (Kantorovich Problem). Given a cost function c, suppose we associate

each transport plan γ ∈ Π(µ, ν) with the cost∫
X×Y

c dγ.

The Kantorovich problem finds a transport plan incurring the smallest cost; any element in

Πc(µ, ν) := argmin
γ∈Π(µ,ν)

∫
X×Y

c dγ

is called an optimal transport plan from µ to ν. The optimal transport cost of the Kan-

torovich problem is

Kc(µ, ν) := inf
γ∈Π(µ,ν)

∫
X×Y

c dγ.
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Again, Kc(µ, ν) = ∞might happen. In this case, it happens if and only if the cost of every

transport plan is ∞. Also, notice that the Kantorovich problem is an infinite-dimensional

linear program, which generalizes the following discrete case to abstract settings.

Example 1.3. Suppose that both probability spaces are discrete, that is, X = {x1, . . . , xm}
and Y = {y1, . . . , yn}, where A and B are their discrete σ-algebras. Then, we may represent

µ and ν as

µ =
m∑
i=1

aiδxi and ν =
n∑
j=1

bjδyj ,

where a1, . . . , am, b1, . . . , bn ∈ R+ and
∑m

i=1 ai =
∑n

j=1 bj = 1. A cost function c can be

represented as a matrix by specifying all possible values, that is, Cij := c(xi, yj) ∈ R. Also,
each transport plan γ ∈ Π(µ, ν) takes the following form:

γ =
m∑
i=1

n∑
j=1

Pijδ(xi,yj),

where Pij ∈ R+ and
n∑
j=1

Pij = ai and
m∑
i=1

Pij = bj.

In this case, γ incurs the cost
∑m

i=1

∑n
j=1CijPij. Accordingly, we may write the Kantorovich

problem as follows:

minimize ⟨C,P⟩
subject to P ∈ Rm×n

+ ,P1n = a,P⊤1m = b,
(1.1)

where a = (a1, . . . , am)
⊤ ∈ Rm

+ and b = (b1, . . . , bn)
⊤ ∈ Rn

+, and C = (Cij) ∈ Rm×n. In other

words, the Kantorovich problem between discrete probability spaces is a linear program;

the variable P is a matrix, the objective function is linear in P, and the constraint set is a

convex polytope, an intersection of a hyperspace P ∈ Rm×n
+ and two hyperplanes P1n = a

and P⊤1m = b.

1.3 Connections between the two optimal transport problems

We prove that the Kantorovich problem is a relaxed version of the Monge problem. The idea

is that any transport map T induces a transport plan (Id, T )#µ, and they incur the same

transport cost given any cost function c.

Lemma 1.1. For any T : X → Y, let (Id, T ) : X → X ×Y denote a function that maps each

x ∈ X to (x, T (x)). If T : X → Y is measurable, so is (Id, T ).
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Proof. Fix a measurable map T : X → Y . As A⊗B is generated by {A×B : A ∈ A, B ∈ B},
it suffices to check (Id, T )−1(A × B) ∈ A for any A ∈ A and B ∈ B. This is true because

measurability of T implies (Id, T )−1(A×B) = A ∩ T−1(B) ∈ A.

Proposition 1.1. T ∈ T (µ, ν) implies (Id, T )#µ ∈ Π(µ, ν). Moreover, for any cost function

c, the cost by a transport map T in the Monge problem coincides with the cost by a transport

plan (Id, T )#µ in the Kantorovich problem. Accordingly, Kc(µ, ν) ≤ Mc(µ, ν).

Proof. Fix T ∈ T (µ, ν). By Lemma 1.1, (Id, T ) is measurable; hence, γT = (Id, T )#µ is

well-defined. Then, γT (A × Y) = µ(Id−1(A)) = µ(A) for any A ∈ A and γT (X × B) =

µ(T−1(B)) = ν(B) for any B ∈ B. Hence, γT ∈ Π(µ, ν). Also, for any cost function c,∫
X×Y

c(x, y) dγT (x, y) =

∫
X
(c ◦ (Id, T ))(x) dµ(x) =

∫
X
c(x, T (x)) dµ(x).

Consequently, for any T ∈ T (µ, ν),∫
X
c(x, T (x)) dµ(x) ≥

∫
X×Y

c(x, y) dγT (x, y) ≥ inf
γ∈Π(µ,ν)

c(x, y) dγ(x, y) = Kc(µ, ν).

Therefore, we have Kc(µ, ν) ≤ Mc(µ, ν).

Note that we can rewrite the Monge problem as

inf
γ∈ΠT (µ,ν)

∫
X×Y

c dγ,

where ΠT (µ, ν) = {(Id, T )#µ : T ∈ T (µ, ν)} is a subset of Π(µ, ν) by Proposition 1.1. Hence,

both Monge and Kantorovich problems are minimization of the objective function

γ 7→
∫
X×Y

c dγ,

where the only difference is that the Kantorovich problem minimizes it over a constraint set

Π(µ, ν), which is larger than that of the Monge problem, that is, ΠT (µ, ν). In other words,

we may view the Kantorovich problem as a relaxed version of the Monge problem obtained

by relaxing the constraint ΠT (µ, ν) to Π(µ, ν).

We will later see that optimal transport plans exists, i.e., given a cost function c, under

mild assumptions, we can find γ⋆ ∈ Π(µ, ν) such that

γ⋆ ∈ argmin
γ∈Π(µ,ν)

∫
X×Y

c dγ ⇔ Kc(µ, ν) =

∫
X×Y

c dγ⋆.

From the aforementioned connection between the Monge and the Kantorovich problems, we

can deduce that Mc(µ, ν) = Kc(µ, ν) if γ
⋆ ∈ ΠT (µ, ν), or equivalently, there is T ⋆ ∈ T (µ, ν)

such that γ⋆ = (Id, T ⋆)#µ. In other words, both problems have the same optimal cost and T ⋆

is an optimal transport map. The following proposition summarizes this simple observation.
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Proposition 1.2. If γ⋆ is an optimal transport plan such that γ⋆ = (Id, T ⋆)#µ for some

transport map T ⋆ ∈ T (µ, ν), we have Mc(µ, ν) = Kc(µ, ν) and T ⋆ is an optimal transport

map.

To utilize Proposition 1.2, we need to verify whether an optimal transport plan is in-

duced by a transport map. As stated below, this depends on whether a transport plan is

concentrated on the graph of some map.

Proposition 1.3. Suppose graph(T ) ∈ A⊗ B for any measurable T : X → Y.

(i) For any T ∈ T (µ, ν), the induced transport plan γT := (Id, T )#µ is concentrated on

the graph of T , i.e., γT (graph(T )) = 1.

(ii) If γ ∈ Π(µ, ν) is concentrated on graph(T ) for some measurable map T : X → Y, then

γ = (Id, T )#µ and T ∈ T (µ, ν).

Proof. (i) Note that (Id, T )−1(graph(T )) = X ; hence, γT (graph(T )) = µ(X ) = 1.

(ii) For any A ∈ A and B ∈ B, note that

(A×B) ∩ graph(T ) = {(x, T (x)) : x ∈ A, T (x) ∈ B} =
(
(A ∩ T−1(B))× Y

)
∩ graph(T ).

Hence,

γ(A×B) = γ((A×B) ∩ graph(T )) (∵ γ(graph(T )) = 1)

= γ
(
((A ∩ T−1(B))× Y) ∩ graph(T )

)
= γ

(
(A ∩ T−1(B))× Y

)
(∵ γ(graph(T )) = 1)

= µ(A ∩ T−1(B)) (∵ γ ∈ Π(µ, ν))

= (Id, T )#µ(A×B).

Therefore, we conclude γ = (Id, T )#µ by the π-λ theorem. The marginal of γ = (Id, T )#µ

on Y is T#µ, which should be ν by definition.

In summary, γ ∈ Π(µ, ν) belongs to ΠT (µ, ν) = {(Id, T )#µ : T ∈ T (µ, ν)} if and only

if γ is concentrated on the graph of some measurable map. Lastly, we note that (ii) of

Proposition 1.3 implies the following: for any measurable map T : X → Y , there can be

only one transport plan concentrated on graph(T ), which is (Id, T )#µ. This will later play

a crucial role in proving uniqueness of optimal transport plans, which is also related to

uniqueness of optimal transport maps; see Proposition 1.8.

Remark 1.1 (Measurability of Graphs). In Proposition 1.3, note that we have assumed

measurability of graph(T ). Without any conditions on (X ,A) and (Y ,B), there might exists

a measurable map T : X → Y such that graph(T ) /∈ A ⊗ B. If X and Y are separable

metrizable spaces equipped with their Borel σ-algebras, graph(T ) is always measurable if T

is measurable; see Proposition 1.7.
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1.4 Probabilistic interpretation of transport

As we have seen in the previous sections, optimal transport problems are formulated and

handled by measure theory. However, purely measure-theoretic thinking is often difficult to

follow. It turns out that we can alleviate such a difficulty by understanding optimal transport

problems via probability theory. To this end, we introduce a probabilistic interpretation of

optimal transport problems.

Transport plans are closely related to the coupling in probability theory. Coupling refers

to constructing two random variables X and Y on some probability space such that the laws

of X and Y are µ and ν, respectively; the joint law of (X, Y ) is also referred to as a coupling

of (µ, ν). Hence, couplings of (µ, ν) are exactly transport plans from µ to ν. Accordingly,

we can rewrite the Kantorovich problem as follows:

inf
X∼µ
Y∼ν

E c(X, Y ),

where X ∼ µ and Y ∼ ν stand for constructing X -valued random variable X whose law is µ

and Y-valued random variable Y whose law is ν, respectively, and E denotes the expectation

with respect to X and Y .

Proposition 1.4. Define a map (Id, Id) : X → X × X by mapping each x ∈ X to (x, x) ∈
X × X . Then, (Id, Id) is measurable, and (Id, Id)#µ belongs to Π(µ, µ).

Remark 1.2. A probabilistic interpretation of Proposition 1.4 is as follows: if there is a

X -valued random variable X whose law is µ, the law of a (X × X )-valued random variable

(X,X) is simply (Id, Id)#µ. Clearly, the law of (X,X) is marginally µ and thus belongs to

Π(µ, µ).

Meanwhile, a coupling of (µ, ν) is said to be deterministic if there exists a measurable

map T : X → Y such that T (X) and Y have the same law. Hence, such a map is exactly a

transport map from µ to ν. Therefore, we can rewrite the Monge problem as follows:

inf
X∼µ

T (X)∼ν

E c(X,T (X)),

where T (X) ∼ ν means that the law of T (X) is ν.

We apply such an interpretation to the case where (X ,A) = (Y ,B) = (R,B(R)), i.e.,
µ, ν ∈ P(R). It turns out that we can always find a transport map from λ ∈ P([0, 1])—

the Lebesgue measure restricted on [0, 1]—to any member of P(R). In the language of

probability theory, this is represented as F−1
µ (U) ∼ µ, where U is the uniform random

variable on [0, 1] and F−1
µ is the quantile function of µ ∈ P(µ). This is also known as the

inverse transform sampling, implying that we can sample from µ by transforming samples

from the uniform distribution on [0, 1].
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Lemma 1.2. For any µ ∈ P(R), let Fµ : R → [0, 1] denote its distribution function, i.e.,

Fµ(x) = µ(−∞, x]. Also, let F−1
µ : (0, 1) → R denotes its quantile function, i.e.,

F−1
µ (u) = inf{x ∈ R : Fµ(x) ≥ u}. (1.2)

For simplicity, we always let F−1
µ (0) = F−1

µ (1) = 0 so that F−1
µ : [0, 1] → R.2

(i) F−1
µ (u) ≤ x if and only if u ≤ Fµ(x) for any u ∈ (0, 1) and x ∈ R.

(ii) (F−1
µ )#λ = µ.

(iii) If Fµ is continuous, (Fµ)#µ = λ.

Proof. (i) Fix u ∈ (0, 1) and x ∈ R. Then, u ≤ Fµ(x) implies F−1
µ (u) ≤ x by definition. Con-

versely, assume F−1
µ (u) ≤ x. By definition, we can find a sequence (xn)n∈N in R converging

to F−1
µ (u) such that u ≤ Fµ(xn) for all n ∈ N. As Fµ is nondecreasing and right-continuous,

u ≤ lim
n→∞

F (xn) = Fµ(F
−1
µ (u)) ≤ Fµ(x).

(ii) It suffices to prove (F−1
µ )#λ(−∞, x] = Fµ(x) for all x ∈ R. By definition,

(F−1
µ )#λ(−∞, x] = λ{u ∈ [0, 1] : F−1

µ (u) ≤ x} = λ{u ∈ (0, 1) : F−1
µ (u) ≤ x}.

Due to (i),

(F−1
µ )#λ(−∞, x] = λ{u ∈ (0, 1) : u ≤ Fµ(x)} = λ(0, Fµ(x)] = Fµ(x).

(iii) It suffices to prove (Fµ)#µ(0, u] = u for all u ∈ (0, 1). By definition,

(Fµ)#µ(0, u] = µ{x ∈ R : Fµ(x) ≤ u}.

As Fµ is continuous, {x ∈ R : Fµ(x) ≤ u} = (−∞, xu], where

xu = sup{x ∈ R : Fµ(x) = u}.

Continuity of Fµ implies Fµ(xu) = u; hence, (Fµ)#µ(0, u] = µ(−∞, xu] = Fµ(xu) = u. In (ii)

and (iii), measurability of Fµ and F−1
µ is implied by their monotonicity.

Proposition 1.5. Let X = Y = R and A = B = B(R); accordingly, µ, ν ∈ P(R) and

Π(µ, ν) ⊂ P(R2).3 For any γ ∈ P(R2), let Fγ : R2 → [0, 1] denote its distribution function,

i.e., Fγ(x, y) = γ((−∞, x]× (−∞, y]).

2As the values of F−1
µ at 0 and 1 are inconsequential, we set them arbitrarily to extend its domain to

[0, 1] without changing its range R.
3By definition, transport plans are probability measures on (R2,B(R)⊗B(R)); as B(R)⊗B(R) = B(R2),

transport plans are indeed Borel probability measures on R2.
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(i) γ ∈ Π(µ, ν) if and only if

Fµ(x) + Fν(y)− 1 ≤ Fγ(x, y) ≤ min{Fµ(x), Fν(y)} ∀(x, y) ∈ R2. (1.3)

(ii) γ = (F−1
µ , F−1

ν )#λ if and only if Fγ(x, y) = min{Fµ(x), Fν(y)} for all (x, y) ∈ R2.

(iii) If Fµ is continuous, F−1
ν ◦ Fµ is a transport map from µ to ν and

(F−1
µ , F−1

ν )#λ = (Id, F−1
ν ◦ Fµ)#µ.

Proof. (i) Assume γ ∈ Π(µ, ν). Since (−∞, x]× (−∞, y] = ((−∞, x]× R) ∩ (R× (−∞, y]),

Fγ(x, y) = γ((−∞, x]× R) + γ(R× (−∞, y])− γ(((−∞, x]× R) ∪ (R× (−∞, y]))

≥ γ((−∞, x]× R) + γ(R× (−∞, y])− 1

= Fµ(x) + Fν(y)− 1.

Also, Fγ(x, y) ≤ min{γ((−∞, x] × R), γ(R × (−∞, y])} = min{Fµ(x), Fν(y)}. Conversely,

suppose γ satisfies (1.3). Letting y → ∞ shows γ((−∞, x] × R) = µ(−∞, x] for all x ∈ R;
similarly, γ(R× (−∞, y]) = ν(−∞, y] for all y ∈ R. Hence, γ ∈ Π(µ, ν).

(ii) Since a Borel probability measure is completely determined by its distribution function,

it suffices to prove the “only if” part. For γ = (F−1
µ , F−1

ν )#λ, as in the proof of Lemma 1.2,

Fγ(x, y) = (F−1
µ , F−1

ν )#λ((−∞, x]× (−∞, y])

= λ{u ∈ [0, 1] : F−1
µ (u) ≤ x and F−1

ν (u) ≤ y}
= λ{u ∈ (0, 1) : F−1

µ (u) ≤ x and F−1
ν (u) ≤ y}

= λ{u ∈ (0, 1) : u ≤ min{Fµ(x), Fν(y)}}
= min{Fµ(x), Fν(y)}.

(iii) Due to Lemma 1.2, (F−1
ν ◦ Fµ)#µ = ((F−1

ν )#(Fµ)#µ) = (F−1
ν )#λ = ν. Similarly,

(F−1
µ , F−1

ν )#λ = (F−1
µ , F−1

ν )#((Fµ)#µ) = (F−1
µ ◦ Fµ, F−1

ν ◦ Fµ)#µ.

By Lemma 1.6, it suffices to show µ{x ∈ R : F−1
µ ◦ Fµ(x) ̸= x} = 0. One can verify that

{x ∈ R : F−1
µ ◦ Fµ(x) ̸= x} ⊂ {x ∈ R : Fµ(x) ∈ D},

where D is the set of points of discontinuity of F−1
µ , which is countable as F−1

µ is monotone.

Hence,

µ{x ∈ R : F−1
µ ◦ Fµ(x) ̸= x} ≤

∑
d∈D

µ{x ∈ R : Fµ(x) = d} = 0,

where µ{x ∈ R : Fµ(x) = d} = 0 holds for any d ∈ [0, 1] as Fµ is continuous.
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1.5 Disintegration and gluing

We introduce two important techniques for analyzing transport plans: disintegration and

gluing. Disintegration is a method for decomposing a probability measure on the product

space (X × Y ,A ⊗ B) along with its marginal. More precisely, any probability measure γ

on (X ×Y ,A⊗B) can be decomposed along with the values in X , namely, for each x ∈ X ,

we can find a probability measure γx on (Y ,B) such that γx(B) = γ(dx×B), meaning that

γx(B) is roughly γ({x} × B) for every B ∈ B. In this case, γ can be represented as an

integration of x 7→ γx with respect to the marginal of γ on X . Such a result is known as

disintegration theorem which holds if Y is a Polish space and B = B(Y).

Theorem 1.1 (Disintegration). Let Y be a Polish space and B = B(Y). For any proba-

bility measure γ on (X ×Y ,A⊗B) that is marginally µ on X , there exists a µ-almost unique

collection {γx : x ∈ X} of Borel probability measures on Y such that a function x 7→ γx(B)

is measurable for any B ∈ B and

γ(S) =

∫
X

∫
Y
I{(x,y)∈S} dγx(y)dµ(x) ∀S ∈ A⊗ B.

More generally, for any measurable function h : X × Y → [0,∞],∫
X×Y

h dγ =

∫
X

∫
Y
h(x, y) dγx(y)dµ(x).

Remark 1.3. In Theorem 1.1, we call {γx : x ∈ X} a collection of conditional probability

measures of γ with respect to its marginal µ on X ; also, µ-almost uniqueness means that

if there are two such collections {γx : x ∈ X} and {γ̃x : x ∈ X} of conditional probability

measures of γ, there must exist A ∈ A such that µ(A) = 1 and γx = γ̃x, i.e., they are the

same probability measure on Y , for all x ∈ A.

Remark 1.4. In the setting of Theorem 1.1, suppose T : X → Y is a transport map from

µ to ν and let γ be the transport plan induced by T (recall Proposition 1.1). Then, one can

verify that γx = δT (x) since for any measurable function h : X × Y → [0,∞],∫
X×Y

h dγ =

∫
X
h(x, T (x)) dµ(x) =

∫
X

∫
Y
h(x, y) dδT (x)(y)dµ(x).

Disintegration theorem is a measure-theoretic version of the regular conditional distri-

bution. Let X and Y be X -valued and Y-valued random variables, respectively. Letting γ

be the joint law of (X, Y ), Theorem 1.1 is essentially the same as obtaining the following

conditional distribution: for each x ∈ X , find a probability measure on (Y ,B) given by

B 7→ P(Y ∈ B |X = x) =: γx(B) ∀B ∈ B
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such that

Eh(X, Y ) = E
∫
Y
h(X, y) dγX(y),

where γX represents a P(Y)-valued random variable, i.e., a random probability measure.

In summary, a conditional probability measure γx of Theorem 1.1 is exactly the regular

conditional distribution of Y given X = x. See Chapter IV of [Ç11] and Chapter 5 of

[Kal97] for comprehensive treatment on the regular condition distribution.

Lemma 1.3 (Gluing). Let (X1,A1, µ1), (X2,A2, µ2), and (X3,A3, µ3) be probability spaces,

where X1 and X3 are Polish spaces, A1 = B(X1), and A3 = B(X3). For γ12 ∈ Π(µ1, µ2) and

γ23 ∈ Π(µ2, µ3), there exists a probability measure Γ on (X1 × X2 × X3,A1 ⊗A2 ⊗A3) such

that (P12)#Γ = γ12 and (P23)#Γ = γ23, where Pij(x1, x2, x3) = (xi, xj) for all i, j ∈ {1, 2, 3}
such that i ̸= j and all (x1, x2, x3) ∈ X1 ×X2 ×X3.

Proof. By Theorem 1.1, we can find two collections {γ(1)x2 : x2 ∈ X2} and {γ(3)x2 : x2 ∈ X2} of

Borel probability measures on X1 and X3, respectively, such that

γ12(S12) =

∫
X2

∫
X1

I{(x1,x2)∈S12} dγ
(1)
x2

(x1)dµ2(x2) ∀S12 ∈ A1 ⊗A2,

γ23(S23) =

∫
X2

∫
X3

I{(x2,x3)∈S23} dγ
(3)
x2

(x3)dµ2(x2) ∀S23 ∈ A2 ⊗A3.

Define Γ ∈ P(X1 ×X2 ×X3) by

Γ(S) =

∫
X2

∫
X1×X3

I{(x1,x2,x3)∈S} dγ
(1)
x2

(x1)dγ
(3)
x2

(x3)dµ2(x2) ∀S ∈ A1 ⊗A2 ⊗A3.

Then, (P12)#Γ = γ12 and (P23)#Γ = γ23; note that this also implies (P13)#Γ ∈ Π(µ1, µ3).

1.6 Supplementary results

We have defined transport maps and plans using set-theoretic definitions. These can always

be rewritten in terms of integration.

Lemma 1.4. Let (X ,A, µ) and (Y ,B, ν) be two measure spaces. For a measurable map

T : X → Y, the following are equivalent.

(i) T#µ = ν.

(ii) For any measurable function ψ : Y → [0,∞],∫
Y
ψ dν =

∫
X
ψ ◦ T dµ.
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(iii) For any measurable function ψ : Y → [−∞,∞] such that
∫
Y ψ dν is well-defined,∫

Y
ψ dν =

∫
X
ψ ◦ T dµ.

We can rewrite the marginal constraints in terms of integration.

Lemma 1.5. The following are equivalent.

(i) γ ∈ Π(µ, ν).

(ii) For any measurable functions φ : X → [0,∞] and ψ : Y → [0,∞],∫
X×Y

φ(x) dγ(x, y) =

∫
X
φ(x) dµ(x) and

∫
X×Y

ψ(y) dγ(x, y) =

∫
Y
ψ(y) dν(y).

(iii) For any measurable functions φ : X → [−∞,∞] and ψ : Y → [−∞,∞] such that∫
X φ dµ and

∫
Y ψ dν are well-defined,∫

X×Y
φ(x) dγ(x, y) =

∫
X
φ(x) dµ(x) and

∫
X×Y

ψ(y) dγ(x, y) =

∫
Y
ψ(y) dν(y).

Proposition 1.6. Let µ = δx0 and ν = δy0 for some x0 ∈ X and y0 ∈ Y. Suppose {x0} ∈ A
and {y0} ∈ B. Then, Π(µ, ν) = {δ(x0,y0)}.

Proposition 1.7. Suppose {(y, y) : y ∈ Y} ∈ B ⊗ B. Then, graph(T ) ∈ A ⊗ B for any

measurable T : X → Y. Also, {x ∈ X : T1(x) = T2(x)} ∈ A for any measurable maps

T1 : X → Y and T2 : X → Y.

Proof. Fix a measurable map T : X → Y and let fT : X × Y → Y × Y be a map such that

fT (x, y) = (T (x), y) for all (x, y) ∈ X × Y . We verify measurability of fT . As B ⊗ B is

generated by {B1 × B2 : B1, B2 ∈ B}, it suffices to check f−1
T (B1 × B2) ∈ A ⊗ B. This is

true because measurability of T implies f−1
T (B1 ×B2) = T−1(B1)×B2 ∈ A⊗B. Therefore,

letting ∆ = {(y, y) : y ∈ Y} ∈ B ⊗ B, we have graph(T ) = f−1
T (∆) ∈ A ⊗ B. Lastly, for

measurable maps T1 and T2, notice that

{x ∈ X : T1(x) = T2(x)} = (Id, T1)
−1(graph(T1) ∩ graph(T2)) ∈ A.

Remark 1.5. The assumption {(y, y) : y ∈ Y} ∈ B ⊗ B of Proposition 1.7 is satisfied if

Y is a separable metrizable space and B = B(Y), i.e., its Borel σ-algebra. To see this,

verify that {(y, y) : y ∈ Y} is a closed set in Y × Y using metrizability, which guarantees

{(y, y) : y ∈ Y} ∈ B(Y × Y). Lastly, B(Y × Y) = B(Y)⊗ B(Y) due to separability.
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Lemma 1.6. Suppoes that two measurable maps T1 : X → Y and T2 : X → Y coincide

µ-almost everywhere, that is, µ{x ∈ X : T1(x) ̸= T2(x)} = 0. Then, (T1)#µ = (T2)#µ.

Proof. Let A = {x ∈ X : T1(x) ̸= T2(x)} (measurable by assumption). For B ∈ B,

µ{x ∈ X : T2(x) ∈ B} = µ{x ∈ A : T2(x) ∈ B}+ µ{x ∈ X\A : T2(x) ∈ B}
= µ{x ∈ X\A : T1(x) ∈ B}
≤ µ{x ∈ X : T1(x) ∈ B},

hence (T2)#µ(B) ≤ (T1)#µ(B). By symmetry, (T2)#µ(B) ≥ (T1)#µ(B).

The converse of Lemma 1.6 is not true in general, i.e., (T1)#µ = (T2)#µ does not imply

T1 = T2. Instead, the following holds.

Lemma 1.7. Suppose graph(T ) ∈ A⊗B for any measurable T : X → Y. For two measurable

maps T1 : X → Y and T2 : X → Y, suppose (Id, T1)#µ = (Id, T2)#µ. Then, T1 : X → Y and

T2 : X → Y coincide µ-almost everywhere.

Proof. Let γ = (Id, T1)#µ = (Id, T2)#µ, G1 = graph(T1), and G2 = graph(T2). Then,

γ(G1) = γ(G2) = 1, which is true because X = (Id, T1)
−1(G1) = (Id, T2)

−1(G2); this does

not need γ ∈ Π(µ, ν). Accordingly, γ(G1 ∩G2) = 1. Also, as G1 ∩G2 ∈ A⊗ B,

(Id, T1)
−1(G1 ∩G2) = {x ∈ X : T1(x) = T2(x)} ∈ A.

Therefore,

µ{x ∈ X : T1(x) = T2(x)} = µ((Id, T1)
−1(G1 ∩G2)) = γ(G1 ∩G2) = 1.

In Proposition 1.2, we have seen that existence of optimal transport maps is implied by

an optimal transport plan induced by some transport map. The next proposition establishes

uniqueness of optimal transport maps. If there is a unique optimal transport plan and it is

induced by a transport map, then such a transport map is also µ-almost everywhere unique.

Proposition 1.8. Suppose graph(T ) ∈ A⊗B for any measurable T : X → Y. Suppose γ⋆ is

the unique optimal transport plan and is induced by some T ⋆ ∈ T (µ, ν), i.e., γ = (Id, T ⋆)#µ.

Then, T ⋆ is a µ-almost everywhere unique optimal transport map.

Proof. Since γ = (Id, T ⋆)#µ is the unique optimal transport plan, one can verify from

Proposition 1.1 that Kc(µ, ν) = Mc(µ, ν), which shows that T ⋆ is an optimal transport map.

Suppose T ∈ T (µ, ν) is another optimal transport map. Then, (Id, T )#µ must be an optimal

transport plan, meaning that (Id, T ⋆)#µ = (Id, T )#µ. By Lemma 1.7, we conclude that T

and T ⋆ coincide µ-almost everywhere.
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2 Existence of Optimal Transport Plans

We will prove that the Kantorovich problem admits a minimizer under mild conditions.

The key idea is (semi-)continuity of the objective function γ 7→
∫
c dγ and compactness of

Π(µ, ν), which necessitates a suitable topology on Π(µ, ν). To this end, we utilize the weak

topology on P(X × Y), assuming X and Y are separable metrizable spaces.

Settings Throughout this section, X and Y are separable metrizable spaces. We always

formulate optimal transport problems between (X ,B(X ), µ) and (Y ,B(Y), ν). Accordingly,

we consider a cost function c : X × Y → (−∞,∞], where X × Y is equipped with the

product σ-algebra B(X )⊗B(Y). Since X and Y are separable, so is X ×Y , which implies

B(X )⊗B(Y) = B(X ×Y). Hence, measurability of c is with respect to the Borel σ-algebra

B(X × Y). For the same reason, Π(µ, ν) ⊂ P(X × Y), that is, transport plans are Borel

probability measures on X × Y .

Remark 2.1 (On Metrizability). Though X and Y are metrizable spaces, we will usu-

ally avoid specifying metrics that metrize their topologies. The reason is that most of the

upcoming results originate from topological properties, not metric-dependent properties.

Remark 2.2 (On Separability). Separability of X and Y is not only a mild assumption,

but also an inevitable setting. The most natural/essential assumption on the cost function

is (semi)-continuity. Continuous functions, however, might not be measurable with respect

to the product σ-algebra B(X ) ⊗ B(Y) because it can be strictly smaller than the Borel

σ-algebra B(X ×Y), which turns out to be the smallest σ-algebra on X ×Y that makes all

continuous functions measurable as X ×Y is metrizable; see Lemma 4.65 of [AB06]. Hence,

ensuring B(X )⊗B(Y) = B(X ×Y) via separability is indispensable for considering (semi)-

continuous cost functions. Also, as separability ensures Π(µ, ν) ⊂ P(X ×Y), we can study

Π(µ, ν) by means of the weak topology P(X × Y). Without separability, we cannot say

that transport plans are Borel probability measures as they are defined over B(X )⊗ B(Y)

which can be strictly smaller than B(X × Y).

2.1 Weak topology

The main results of this section come from various properties of the weak topology on

P(X ×Y). We briefly study the weak topology on P(Z) for a general metrizable space Z;

see Chapter 15 of [AB06], Chapter 11 of [Dud02], Section 1 of [Bil99].

In general, given a set and a family of functions defined on the set, the weak topology

generated by that family is the smallest (weakest) topology that makes all functions in that

family continuous; see Section 2.13 of [AB06]. In the case of the space of Borel probability
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measures, the weak topology means the one generated by a family of functionals associated

with bounded and continuous functions.

Definition 2.1. Let Z be a metrizable space. For each f ∈ Cb(Z), define a functional Lf

on P(Z) as follows:

Lf (γ) =

∫
Z
f dγ.

The weak topology on P(Z) generated by {Lf : f ∈ Cb(Z)} is simply called the weak

topology on P(Z). The convergence in this weak topology is called the weak convergence;

a sequence (γn)n∈N in P(Z) is said to converge weakly to γ ∈ P(Z) if

lim
n→∞

∫
Z
f dγn =

∫
Z
f dγ ∀f ∈ Cb(Z). (2.1)

Of course, there is an obvious reason for choosing these functionals to define the weak

topology. As stated in the following lemma, γ 7→ {Lf (γ) : f ∈ Cb(Z)} is injective. In other

words, {Lf : f ∈ Cb(Z)} distinguishes elements of P(Z).

Lemma 2.1. Given a metrizable space Z, two elements γ1 and γ2 of P(Z) coincide if and

only if ∫
Z
f dγ1 =

∫
Z
f dγ2 ∀f ∈ Cb(Z).

By definition of weak convergence, we can see that the objective function of the Kan-

torovich problem is continuous provided the cost function is continuous and bounded. In

other words, if c ∈ Cb(X × Y), for a sequence (γn)n∈N in Π(µ, ν) converging weakly to

γ ∈ Π(µ, ν),

lim
n→∞

∫
X×Y

c dγn =

∫
X×Y

c dγ.

However, the assumption c ∈ Cb(X ×Y) is often too restrictive. Using the following lemma,

we will show that lower semi-continuity of c leads to

lim inf
n→∞

∫
X×Y

c dγn ≥
∫
X×Y

c dγ,

which turns out to be sufficient for existence of optimal transport plans.

Lemma 2.2. For a nonnegative lower semi-continuous function f defined on a metric space

(Z, ρ), there exists a sequence (fn)n∈N of bounded Lipschitz functions on Z converging point-

wise to f such that 0 ≤ fn ≤ fn+1 ≤ f for all n ∈ N.

Proof. For each n ∈ N, define fn(z) = infy∈Z (f(y) ∧ n+ nρ(z, y)) for all z ∈ Z. Observe

that fn is bounded and n-Lipschitz and 0 ≤ fn ≤ fn+1 ≤ f for all n ∈ N. Fix z ∈ Z
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and prove limn→∞ fn(z) = f(z). Fix a ∈ R such that a < f(z). Then, due to lower semi-

continuity of f , there exists δ > 0 such that a < f(y) for all y ∈ Z satisfying ρ(y, z) < δ.

For n ∈ N such that n > a,

inf
y∈Z

ρ(y,z)<δ

(f(y) ∧ n+ nρ(z, y)) ≥ inf
y∈Z

ρ(y,z)<δ

f(y) ∧ n ≥ a.

For y ∈ Z satisfying ρ(y, z) ≥ δ, provided n > a/δ,

f(y) ∧ n+ nρ(z, y) ≥ 0 + nδ > a.

In summary, fn(z) ≥ a for n ∈ N such that n > a ∨ a/δ, which means limn→∞ fn(z) ≥ a.

As this is true for any a ∈ R satisfying a < f(z), we conclude that fn converges to f

pointwise.

In other words, any lower semi-continuous that is bounded below is represented as a

pointwise limit of a nondecreasing sequence of bounded Lipschitz functions.

Proposition 2.1. Given a metric space Z, suppose that a sequence (γn)n∈N in P(Z) con-

verges weakly to γ ∈ P(Z). Then, for any lower semi-continuous f that is bounded below,∫
Z
f dγ ≤ lim inf

n→∞

∫
Z
f dγn.

Proof. Without loss of generality, assume f ≥ 0. By Lemma 2.2, we can find a sequence

(fk)k∈N of bounded Lipschitz functions—under some compatible metric on Z—converging

pointwise to f . As 0 ≤ fk ≤ fk+1 ≤ f for all k ∈ N, the monotone convergence theorem

implies ∫
Z
f dγ = sup

k∈N

∫
Z
fk dγ = sup

k∈N

(
lim
n→∞

∫
Z
fk dγn

)
≤ lim inf

n→∞

(
sup
k∈N

∫
Z
fk dγn

)
.

Applying the monotone convergence theorem again,∫
Z
f dγ ≤ lim inf

n→∞

(
sup
k∈N

∫
Z
fk dγn

)
= lim inf

n→∞

∫
Z
f dγn.

Remark 2.3. If the weak topology on P(Z) is metrizable, Proposition 2.1 essentially shows

that the functional γ 7→
∫
Z f dγ is lower semi-continuous. The weak topology on P(Z) is

indeed metrizable (and separable) provided Z is separable; see Theorem 15.12 of [AB06].

The essence of Lemma 2.2 and Proposition 2.1 is the approximation technique based on

the collection of all bounded Lipschitz functions. This collection plays an important role in

weak convergence as well, namely, we may replace Cb(Z) with this collection in (2.1). In

fact, there are many alternative definitions of weak convergence, which is summarized as

follows; see Theorem 11.1.1 of [Dud02] for the proof.

21



Theorem 2.1 (Portmanteau Theorem). Let Z be a metrizable space, (γn)n∈N be a se-

quence in P(Z), and γ ∈ P(Z). The following are equivalent.

(i) (γn)n∈N converges weakly to γ.

(ii) Given any compatible metric ρ on Z,

lim
n→∞

∫
Z
f dγn =

∫
Z
f dγ ∀f ∈ BL(Z, ρ).

(ii) lim infn→∞ γn(G) ≥ γ(G) for every open set G ⊂ Z.

(iii) lim supn→∞ γn(F ) ≤ γ(F ) for every closed set F ⊂ Z.

(iv) limn→∞ γn(B) = γn(B) for every set B ⊂ Z such that γ(∂B) = 0.

Now, we shift our interest to compactness in the weak topology. It turns out that the

following regularity called tightness plays a crucial role.

Definition 2.2. Let Z be a metrizable space. We say γ ∈ P(Z) is tight if for any ε > 0,

there exists a compact set K such that γ(Z\K) < ε. We say a collection P ⊂ P(Z) is tight

if for any ε > 0, there exists a compact set K such that γ(Z\K) < ε for all γ ∈ P .

Remark 2.4. If Z is a Polish space, any element of P(Z) is tight, which is referred to as

Ulam’s theorem; see Theorem 7.1.4 of [Dud02].

We introduce Prokhorov’s theorem, the most fundamental result establishing compact-

ness in the weak topology. Essentially, it relates tightness of P ⊂ P(Z) with relative

compactness; see Theorems 5.1 and 5.2 of [Bil99] or Lemma 15.21 and Theorem 15.22 of

[AB06] for the proof.

Theorem 2.2 (Prokhorov’s Theorem). Let Z be a metrizable space and P ⊂ P(Z).

(i) P is tight.

(ii) Any sequence in P has a weakly convergent subsequence (its limit may not be in P).

(iii) P is relatively compact.

Then, (i) implies (ii). If Z is separable, (ii) and (iii) are equivalent. If Z is a Polish space,

(ii) = (iii) implies (i).

Remark 2.5. In Theorem 2.2, (ii) is often referred to as relative sequential compactness of

P . In general, relative compactness and relative sequential compactness are equivalent in a

metrizable space. Hence, (ii) and (iii) are equivalent provided the weak topology on P(Z)

is metrizable, which is true if Z is separable (Remark 2.3).
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2.2 Existence of optimal transport plans

First, we give an alternative characterization of a transport plan that is useful in metrizable

space cases (compare with Lemma 1.5).

Lemma 2.3. γ ∈ Π(µ, ν) if and only if∫
X×Y

φ(x) dγ(x, y) =

∫
X
φ(x) dµ(x) and

∫
X×Y

ψ(y) dγ(x, y) =

∫
Y
ψ(y) dν(y).

for all (φ, ψ) ∈ Cb(X )× Cb(Y).

Proof. Define a map PX : X × Y → X as PX (x, y) = x. Note that, PX is measurable with

respect to (X × Y ,B(X ) ⊗ B(Y)) and (X ,B(X )). It suffices to show that (PX )#γ = µ if

and only if ∫
X×Y

φ(x) dγ(x, y) =

∫
X
φ(x) dµ(x)

for all φ ∈ Cb(X ). Also, (PX )#γ = µ if and only if∫
X
φ d(PX )#γ =

∫
X
φ dµ,

for all φ ∈ Cb(X ) by Lemma 2.1. Since the change of variables formula yields∫
X
φ d(PX )#γ =

∫
X×Y

φ dγ

for all φ ∈ Cb(X ), we prove (PX )#γ = µ if and only if∫
X×Y

φ dγ =

∫
X
φ dµ.

In this case, Π(µ, ν) is closed in the weak topology on P(X × Y).

Proposition 2.2. Π(µ, ν) is closed in P(X × Y).

Proof. Let (γn)n∈N be a sequence in Π(µ, ν) converging weakly to some γ ∈ P(X × Y).

Then for each φ ∈ Cb(X ) since (x, y) 7→ φ(x) is in Cb(X × Y),∫
X×Y

φ(x) dγ(x, y) = lim
n→∞

∫
X×Y

φ(x) dγn(x, y) =

∫
X
φ(x) dµ(x).

Repeating the same process with ψ ∈ Cb(Y) yields γ ∈ Π(µ, ν) due to the previous part of

the lemma.
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Now, we present the main theorem. As mentioned earlier, the key is to prove Π(µ, ν) is

compact in the weak topology on P(X × Y).

Theorem 2.3 (Existence of Optimal Transport Plans). If µ ∈ P(X ) and ν ∈ P(Y)

are tight, Π(µ, ν) is compact in P(X × Y). Moreover, if the cost function c is lower semi-

continuous, the Kantorovich problem admits a minimizer, i.e., there exists an optimal trans-

port plan.

Proof. Since Π(µ, ν) is closed, it suffices to show that it is relatively compact to prove

compactness; due to the separability of X ×Y , tightness implies relative compactness in the

weak topology of P(X ×Y) (see Theorem 2.2). Since µ and ν are tight, for ε > 0, there exist

compact sets K and L such that µ(X\K) < ε and ν(Y\L) ≤ ε. Then, for any γ ∈ Π(µ, ν),

γ ((X × Y)\(K × L)) ≤ γ(X × (Y\L)) + γ((X\K)× Y) = ν(Y\L) + µ(X\K) ≤ 2ε.

Hence, Π(µ, ν) is tight. As mentioned earlier, this leads to compactness. Now, choose a

sequence (γn)n∈N in Π(µ, ν) such that
∫
c dγn → Kc(µ, ν). Since Π(µ, ν) is compact, by

taking a subsequence if necessary, we may assume that (γn)n∈N converges weakly to some

γ⋆ ∈ Π(µ, ν). Since c is lower semi-continuous and bounded below, Proposition 2.1 implies∫
X×Y

c dγ⋆ ≤ lim inf
n→∞

∫
X×Y

c dγn = Kc(µ, ν).

Hence, γ⋆ is an optimal transport plan.

Remark 2.6. Notice that the compactness of Π(µ, ν) comes from the tightness of µ and ν.

If X and Y are Polish spaces, as mentioned in Remark 2.4, all the elements of P(X ) and

P(Y) are tight; in this case, we can always find an optimal transport plan between µ and ν

provided c is lower semi-continuous.

2.3 Supplementary results

Proposition 2.3. µ ∈ P(X ) and ν ∈ P(Y) are tight if and only if Π(µ, ν) is tight.

Proof. We have already shown (⇒). To prove (⇐), assume Π(µ, ν) is tight. Fix ε > 0. Then,

we can find a compact set K ⊂ X ×Y such that γ((X ×Y)\K) < ε for all γ ∈ Π(µ, ν). Now,

we define KX ⊂ X such that x ∈ KX if and only if there exists y ∈ Y satisfying (x, y) ∈ K.

Note that for any γ ∈ Π(µ, ν),

µ(X\KX ) = γ((X\KX )× Y) = γ((X × Y)\(KX × Y)) ≤ γ((X × Y)\K) < ε,

where the first inequality is due to K ⊂ KX × Y . Now, it suffices to prove that KX is a

compact subset of X . If (Ui)i∈I is an open cover of KX , then (Ui×Y)i∈I is an open cover of

K. Compactness of K implies that there exists a finite subcover, say (Ui × Y)1≤i≤N . Verify

that (Ui)1≤i≤N covers KX . Hence, µ is tight. Similarly, ν is tight.
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Lemma 2.4 (Tightness of Transport Plans). Let P and Q be tight subsets of P(X )

and P(Y), respectively, and Π(P ,Q) be the collection of all Borel probability measures on

X × Y whose marginals lie in P and Q, respectively, i.e., (PX )#γ ∈ P and (PY)#γ ∈ Q.

Then, Π(P ,Q) is a tight subset of P(X × Y).

Proof. For ε > 0, there exist compact sets K and L such that µ(X\K) < ε for all µ ∈ P(X )

and ν(Y\L) ≤ ε for all ν ∈ P(Y). Hence, for any γ ∈ Π(P ,Q),

γ ((X × Y)\(K × L)) ≤ γ(X × (Y\L)) + γ((X\K)× Y)

= (PY)#γ(Y\L) + (PX )#γ(X\K)

≤ 2ε.

Therefore, Π(P ,Q) is tight.

Proposition 2.4 (Stability of Transport Plans). Suppose X and Y are Polish spaces.

Let (µn)n∈N and (νn)n∈N be sequences converging weakly to µ in P(X ) and ν in P(Y),

respectively. Also, let (γn)n∈N be a sequence in P(X × Y) such that γn ∈ Π(µn, νn) for all

n ∈ N. Then, (γn)n∈N has a subsequence converging weakly to some γ ∈ Π(µ, ν).

Proof. Since X and Y are Polish spaces, P = {µn : n ∈ N} and Q = {νn : n ∈ N} are

sequentially compact, which is equivalent to compactness as the weak topologies on P(X )

and P(Y) are metrizable (Remark 2.3). Accordingly, P and Q are tight by Theorem 2.2.

Due to Lemma 2.4, Π(P ,Q) is tight; hence, so is {γn : n ∈ N} ⊂ Π(P ,Q). Theorem 2.2 tells

that (γn)n∈N has a subsequence, say (γn(k))k∈N, converging weakly to some γ ∈ P(X × Y).

Note that∫
X×Y

φ(x) dγ(x, y) = lim
k→∞

∫
X×Y

φ(x) dγn(k)(x, y) = lim
k→∞

∫
X
φ(x) dµn(k)(x) =

∫
X
φ(x) dµ(x)

for all φ ∈ Cb(X ). Hence, γ ∈ Π(µ, ν) follows due to Lemma 2.3.
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3 Optimality and Duality in the Kantorovich Problem

This section studies a necessary and sufficient condition for optimal transport plans, which

will serve as the most fundamental result in optimal transport theory. In addition, we show

that the Kantorovich problem is associated with its dual problem, generalizing the duality

theory of finite-dimensional linear programming to the infinite-dimensional case.

Settings Throughout this section, X and Y are separable metrizable spaces unless other-

wise stated; we consider the Kantorovich problem between (X ,B(X ), µ) and (Y ,B(Y), ν)

with a cost function c.

3.1 Overview

We first briefly discuss high-level ideas of optimality and duality.

Optimality It turns out that the support of a transport plan determines optimality; such

a property is called the c-cyclical monotonicity. More precisely, if γ ∈ Π(µ, ν) is an optimal

transport plan,
n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i))

for any n ∈ N, (x1, y1), . . . , (xn, yn) ∈ supp(γ), and any permutation σ ∈ Perm(n). To

see why optimality is related to such a condition, let us consider a simple example, where

µ = 1
2
δx1 +

1
2
δx2 and ν = 1

2
δy1 +

1
2
δy2 . Suppose that γ = 1

2
δ(x1,y1) +

1
2
δ(x2,y2) is an optimal

transport plan. Then, c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1) must hold; otherwise,

γ⋆ := 1
2
δ(x1,y2) +

1
2
δ(x2,y1) incurs the smaller cost than γ, contradicting γ is optimal.

Duality Besides the optimality result, we will derive the duality result of the Kantorovich

problem. The dual problem takes the following form:

maximize

∫
X
φ dµ+

∫
Y
ψ dν,

subject to (φ, ψ) ∈ L1(µ)× L1(ν),

φ(x) + ψ(y) ≤ c(x, y) ∀(x, y) ∈ X × Y .

By Lemma 1.5, note that the dual objective function is

D(φ, ψ) :=

∫
X
φ dµ+

∫
Y
ψ dν =

∫
X×Y

(φ(x) + ψ(y)) dγ(x, y) ∀γ ∈ Π(µ, ν).

Due to the constraint of the dual problem, D(φ, ψ) ≤ Kc(µ, ν) for any dual variable (φ, ψ),

which implies that the supremum of the dual problem ≤ Kc(µ, ν). Under mild conditions,

we will see that this inequality becomes equality, showing the duality.
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Semi-Duality The objective function D of the dual problem increases if we replace the

dual variable (φ, ψ) with (φ, φc), where φc(y) = infx∈X (c(x, y)− φ(x)), because ψ ≤ φc. In

other words, φc—called the c-transform of φ—is the largest possible function ψ such that

φ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y . Accordingly, maximizing the following, called

the semi-dual problem, is equivalent to the dual problem:

φ 7→ S(φ) :=

∫
X
φ dµ+

∫
Y
φc dν

The semi-duality, i.e., the supremum of S over a suitable collection coincides with Kc(µ, ν),

holds under mild assumptions. Also, the semi-dual problem admits a maximizer, say φo,

satisfying a property called c-concavity. Importantly, for any optimal transport plan γ,∫
X×Y

(φo(x) + φco(y)) dγ(x, y) = S(φo) = Kc(µ, ν) =

∫
X×Y

c dγ,

which implies that γ is concentrated on the following set called the c-superdifferential of φ:

{(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)}.

This set will play an important role in characterizing optimal transport plans.

Definition 3.1. Let X and Y be nonempty sets and c : X × Y → R.

(i) A subset Π of X × Y is said to be c-cyclically monotone if

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i))

for any n ∈ N, (x1, y1), . . . , (xn, yn) ∈ Π, and any permutation σ ∈ Perm(n).

(ii) The c-transform of φ : X → [−∞,∞] is a function φc : Y → [−∞,∞] defined by

φc(y) = inf
x∈X

(c(x, y)− φ(x)) .

Similarly, the c-transform of ψ : Y → [−∞,∞] is ψc : X → [−∞,∞] defined by

ψc(x) = inf
y∈Y

(c(x, y)− ψ(y)) .

(iii) A function φ : X → [−∞,∞] is c-concave if φ = ψc for some ψ : Y → [−∞,∞].

Similarly, ψ : Y → [−∞,∞] is c-concave if ψ = φc for some φ : X → [−∞,∞].

(iv) The c-superdifferential of a function φ : X → [−∞,∞] is defined by

∂cφ := {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)} .
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In fact, all the aforementioned optimality, duality, and semi-duality results are closely

intertwined due to connections among c-cyclical monotonicity, c-transform, c-concavity, and

c-superdifferential. The main result is that every c-cyclically monotone set is a subset of the

c-superdifferential of some proper c-concave function.

Theorem 3.1. Let X and Y be nonempty sets and c : X × Y → R. If Π ⊂ X × Y is

c-cyclically monotone, there exists a proper c-concave function φ : X → [−∞,∞) such that

Π ⊂ {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)} .

Remark 3.1. Let us consider the case where X = Y = Rd and c(x, y) = 1
2
∥x− y∥22. Then,

all the ingredients in Definition 3.1 as well as Theorem 3.1 boil down to well-known convex

analysis results; we see this in Section 5.2. Indeed, Theorem 3.1 is a generalization of Rock-

afellar’s result on cyclical monotonicity (Theorem 5.2), which plays a role in characterizing

the subdifferential of a convex function. We defer the proof of Theorem 3.1 to Section 3.4.

Also, c-concavity plays a crucial role in the semi-dual problem. Recall that the dual

variable (φ, ψ) is associated with the dual objective function

D(φ, ψ) =

∫
X
φ dµ+

∫
Y
ψ dν.

We have seen that D(φ, ψ) ≤ D(φ, φc), i.e., we can increase the dual objective function

by replacing the (φ, ψ) with (φ, φc), which results in the semi-dual problem. In fact, we

can apply this reasoning again to deduce that D(φ, φc) ≤ D(φcc, φc) ≤ D(φcc, φccc). Can

we increase D endlessly by repeating this process? It turns out that φc = φccc, meaning

that this process causes no increase after (φcc, φc). The crucial fact φc = φccc is indeed a

key result in characterizing c-concavity. We will show that any c-concave function remains

unchanged after taking the c-transform twice.

All the discussions so far will be restated in the subsequent sections, rigorously checking

technical details. To this end, we prepare basic properties the c-transform and c-concavity.

Proposition 3.1. Let X and Y be nonempty sets and c : X×Y → R. Fix φ : X → [−∞,∞].

(i) φc ≡ −∞ if φ(x) = ∞ for some x ∈ X .

(ii) φc ≡ ∞ if φ ≡ −∞.

Now, suppose φ : X → [−∞,∞) and φ is proper.

(iii) φc : Y → [−∞,∞).

(v) φ(x) + φc(y) ≤ c(x, y) for all (x, y) ∈ X × Y.
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Remark 3.2. Note that φc in (iii) of Proposition 3.1 might not be proper, i.e., φc ≡ −∞
can happen. For instance, consider X = Y = R, c(x, y) ≡ 0, and φ(x) = x2.

Next, we characterize c-concave functions. As mentioned earlier, the key is that any

c-concave function remains unchanged after taking the c-transfrom twice.

Proposition 3.2. Let X and Y be nonempty sets and c : X×Y → R. Fix φ : X → [−∞,∞].

(i) φcc ≥ φ.

(ii) φ = φcc if and only if φ is c-concave; in this case, only one of the following is true:

(1) φ ≡ ∞ and φc ≡ −∞.

(2) φ ≡ −∞ and φc ≡ ∞.

(3) φ : X → [−∞,∞) and φc : Y → [−∞,∞), where both φ and φc are proper.

Remark 3.3. As in Remark 3.1, if X = Y = Rd and c(x, y) = 1
2
∥x − y∥22, Proposition 3.2

boils down to the standard result on conjugate of convex functions.

Lastly, we derive topological properties of c-concave functions.

Proposition 3.3. Let X and Y be nonempty sets and c : X × Y → R.

(i) If c is bounded, every proper c-concave function is bounded.

Let X and Y be topological spaces and suppose c is continuous.

(ii) Every c-concave function is upper semi-continuous.

(iii) ∂cφ is closed for every c-concave function.

Let X and Y be metric spaces.

(iv) If c is uniformly continuous, every proper c-concave function is uniformly continuous.

(v) If c is L-Lipschitz for some L > 0, every proper c-concave function is L-Lipschitz.

We defer the proofs of Propositions 3.2 and 3.3 to Section 3.4.
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3.2 Optimality

Now, we are ready to establish the optimality result. We first start with the following

necessary condition for optimal transport plans, stating that every optimal transport plan

has a c-cyclically monotone support.

Proposition 3.4. Suppose c : X × Y → R is continuous and Kc(µ, ν) < ∞. Then, the

support of any optimal transport plan is c-cyclically monotone.

The formal proof of Proposition 3.4 is defer to Section 3.4. Instead, consider a simple

case where both µ and ν are finitely supported. Suppose γ is an optimal transport plan

whose support is not c-cyclically monotone. By definition, we can find (x1, y1), . . . , (xn, yn) ∈
supp(γ) and a permutation σ ∈ Perm(n) such that

C :=
n∑
i=1

c(xi, yi)−
n∑
i=1

c(xi, yσ(i)) > 0.

Note that γ is also finitely supported; hence, (xi, yi) ∈ supp(γ) implies wi := γ({(xi, yi)}) > 0

for all i ∈ [n]. Take η > 0 such that nη < mini∈[n]wi and let

γ⋆ = γ − η
n∑
i=1

δ(xi,yi) + η
n∑
i=1

δ(xi,σ(i)).

By definition,

γ⋆(S) ≥ γ(S)− η
n∑
i=1

δ(xi,yi)(S) ≥
n∑
i=1

(γ(S)− wiδ(xi,yi)(S)) ∀S ∈ B(X × Y).

Hence, γ⋆ ∈ P(X × Y). Also, γ⋆ ∈ Π(µ, ν) follows as

γ⋆(A× Y) = γ(A× Y)− η
n∑
i=1

δxi(A) + η
n∑
i=1

δxi(A) = µ(A) ∀A ∈ B(X ),

γ⋆(X ×B) = γ(X ×B)− η
n∑
i=1

δyi(B) + η
n∑
i=1

δyσ(i)
(B) = ν(B) ∀B ∈ B(Y).

Therefore, ∫
c dγ⋆ =

∫
c dγ − η

n∑
i=1

c(xi, yi) + η

n∑
i=1

c(xi, yσ(i)) <

∫
c dγ,

where the last inequality holds because C > 0.4 This contradicts that γ is optimal. Therefore,

supp(γ) must be c-cyclically monotone.

4Note that the strict inequality holds as
∫
cdγ < ∞ which follows from Kc(µ, ν) < ∞.
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In summary, if the support is not c-cyclically monotone, we can modify a transport plan

by reallocating the mass at such points (x1, y1), . . . , (xn, yn) to (x1, yσ(1)), . . . , (xn, yσ(n)). In

the case where µ and ν are not necessarily finitely supported, we can still apply this idea by

taking a small open rectangular Ui × Vi containing (xi, yi) for each i ∈ [n] and reallocating

the mass on U1 × V1, . . . , Un × Vn to U1 × Vσ(1), . . . , Un × Vσ(n).

We show that the converse is true under mild assumptions, thereby proving that c-

cyclically monotone support is the necessary and sufficient condition for optimality.

Theorem 3.2 (Optimality). Suppose c : X × Y → R is continuous and Kc(µ, ν) < ∞.

Assume∫
X
c(x, y) dµ(x) <∞ ∀y ∈ Y and

∫
Y
c(x, y) dν(y) <∞ ∀x ∈ X . (MC)

For γ ∈ Π(µ, ν), the following are equivalent.

(i) γ is an optimal transport plan.

(ii) supp(γ) is c-cyclically monotone.

(iii) There exists a proper c-concave function φo : X → [−∞,∞) such that supp(γ) ⊂ ∂cφo.

Proof. We have already proved (i) ⇒ (ii) by Proposition 3.4. Also, (ii) ⇒ (iii) holds by

Theorem 3.1. Suppose (iii) holds. We show that φ+
o ∈ L1(µ) and (φco)

+ ∈ L1(ν). First,

φo and φco are measurable as they are upper semi-continuous by Proposition 3.3. As φo is

proper, φo(x) + φco(y) ≤ c(x, y) for all (x, y) ∈ X × Y by Proposition 3.1. Hence, for any

y0 ∈ Y ,

φo(x) ≤ c(x, y0)− φco(y0) ∀x ∈ X . (3.1)

As ∂cφo contains supp(γ) which is nonempty, φco is proper. Hence, we may pick y0 ∈ Y
such that φco(y0) ∈ R. Then, (MC) and (3.1) imply φ+

o ∈ L1(µ); similarly, (φco)
+ ∈ L1(ν).

Therefore, for any γ′ ∈ Π(µ, ν),∫
X
φo dµ+

∫
Y
φco dν =

∫
X×Y

(φo(x) + φco(y)) dγ
′(x, y) ≤

∫
X×Y

c dγ′, (3.2)

where the equality is due to Lemma 1.5 and the inequality holds as φo(x) + φco(y) ≤ c(x, y)

for all (x, y) ∈ X × Y by Proposition 3.1. Meanwhile, note that∫
X
φo dµ+

∫
Y
φco dν =

∫
X×Y

(φo(x) + φco(y)) dγ(x, y) =

∫
X×Y

c dγ, (3.3)

where the second equality is due to supp(γ) ⊂ ∂cφo. Therefore, by comparing (3.2) and

(3.3), we conclude that γ is an optimal transport plan.
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Remark 3.4 (On Moment Condition). As we have seen in the proof of Theorem 3.2,

the Moment Condition (MC) guarantees the following: for any proper c-concave function

φ : X → [−∞,∞), we have φ+ ∈ L1(µ) and (φc)+ ∈ L1(ν). This enabled us to obtain (3.3)

for φo in (iii), which—together with the assumption Kc(µ, ν) <∞—leads to φo ∈ L1(µ) and

φco ∈ L1(ν). In fact, (MC) is a mild assumption which is satisfied in many situations. First,

it is obvious when c is bounded; in this case, Kc(µ, ν) < ∞ is also guaranteed. As we will

see later, another common situation is where we can find a ∈ L1(µ) and b ∈ L1(ν) such that

c(x, y) ≤ a(x) + b(y) ∀(x, y) ∈ X × Y , (3.4)

which also ensures Kc(µ, ν) <∞.

Remark 3.5. In the proof of Theorem 3.2, note that (iii) ⇒ (i) still holds even if we

replace c-concavity of φo with measurability of φo. In other words, Theorem 3.2 is still true

even if we weaken the condition (iii) as follows: there exists a proper measurable function

φo : X → [−∞,∞) such that supp(γ) ⊂ ∂cφo.

One important implication of Theorem 3.2 is that (iii) implies that the support of any

optimal transport plan is contained in ∂cφo.

Corollary 3.1. In Theorem 3.2, if (iii) holds for some γ ∈ Π(µ, ν), the support of any

optimal transport plan (including γ) is contained in ∂cφo.

Proof. We have already proved that γ is optimal from (iii) ⇒ (i) of Theorem 3.2. Let γ′ be

any optimal transport plan. As in the proof of (iii) ⇒ (i), we have∫
X×Y

c dγ′ =

∫
X×Y

c dγ =

∫
X
φo dµ+

∫
Y
φco dν =

∫
X×Y

(φo + φco) dγ
′,

where the first equality is due to optimality of γ and γ′ and the other two equalities are from

(3.2) and (3.3). As φo(x)+φ
c
o(y) ≤ c(x, y) for all (x, y) ∈ X ×Y by Proposition 3.1, we have

γ′(∂cφo) = 1. Since ∂cφo is a closed set by Proposition 3.3, we conclude supp(γ′) ⊂ ∂cφo.

3.3 Duality and semi-duality

For φo in (iii) of Theorem 3.2, we have indeed shown that

Kc(µ, ν) =

∫
X
φo dµ+

∫
Y
φco dν.

This is the semi-duality mentioned earlier. It is worth noting that optimality and semi-

duality come together; plus, this also means that the dual problem admits a maximizer.

Before stating the details, we first formally define the dual and semi-dual problems.
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Definition 3.2. Consider the Kantorovich problem between two probability spaces (X ,A, µ)
and (Y ,B, ν) with a cost function c. We write φ⊕ ψ ≤ c if φ : X → [−∞,∞] and ψ : Y →
[−∞,∞] are measurable functions such that φ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y .

The dual problem of the Kantorovich problem is defined as follows:

maximize

∫
X
φ dµ+

∫
Y
ψ dν,

subject to (φ, ψ) ∈ L1(µ)× L1(ν),

φ⊕ ψ ≤ c.

The semi-dual problem of the Kantorovich problem is defined as follows:

maximize

∫
X
φ dµ+

∫
Y
φc dν,

subject to (φ, φc) ∈ L1(µ)× L1(ν).

By definition, one can easily verify that the supremum of the dual problem or the semi-

dual problem is bounded above by Kc(µ, ν), i.e.,

sup
(φ,ψ)∈L1(µ)×L1(ν)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
, sup
(φ,φc)∈L1(µ)×L1(ν)

(∫
X
φ dµ+

∫
Y
φc dν

)
≤ Kc(µ, ν).

Under mild assumptions, the dual and semi-dual problems have the same supremum.

Lemma 3.1. Suppose c : X × Y → R is continuous and Kc(µ, ν) <∞. Then,

sup
(φ,ψ)∈L1(µ)×L1(ν)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
= sup

(φ,φc)∈L1(µ)×L1(ν)

(∫
X
φ dµ+

∫
Y
φc dν

)
.

Proof. Let D be the supremum of the dual problem and S be the supremum of the semi-

dual problem. First, note that (φ, φc) ∈ L1(µ) × L1(ν) implies φ : X → [−∞,∞) must be

proper; hence, φ ⊕ φc ≤ c. Therefore, D ≥ S holds. For any (φ, ψ) ∈ L1(µ) × L1(ν) such

that φ ⊕ ψ ≤ c, note that ψ(y) ≤ c(x, y) − φ(x) for all (x, y) ∈ X × Y as c < ∞ and

φ : X → [−∞,∞) must be proper. Therefore, ψ ≤ φc holds, which also implies (φc)− ≤ ψ−

and thus (φc)− ∈ L1(ν). Accordingly,∫
X
φ dµ+

∫
Y
φc dν =

∫
X×Y

(φ(x) + φc(y)) dγ(x, y) ∀γ ∈ Π(µ, ν),

where the first equality is due to Lemma 1.5. As Kc(µ, ν) < ∞, this shows
∫
Y φ

c dν < ∞,

proving φc ∈ L1(ν). This shows that D ≤ S, and thus D = S holds.

Now, we finally derive the following result from Theorem 3.2.
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Corollary 3.2 (Semi-Duality). Suppose c : X × Y → R is continuous and Kc(µ, ν) < ∞.

Assume∫
X
c(x, y) dµ(x) <∞ ∀y ∈ Y and

∫
Y
c(x, y) dν(y) <∞ ∀x ∈ X . (MC)

If µ and ν are tight, there exists a proper c-concave function φo : X → [−∞,∞) such that

(φo, φ
c
o) ∈ L1(µ)× L1(ν) and

min
γ∈Π(µ,ν)

∫
X×Y

c dγ =

∫
X
φo dµ+

∫
Y
φco dν. (3.5)

Accordingly, the following versions of semi-duality hold:

Kc(µ, ν) = max
(φ,φc)∈L1(µ)×L1(ν)

(∫
X
φ dµ+

∫
Y
φc dν

)
= max

φ : X→[−∞,∞)
proper and c-concave

(∫
X
φ dµ+

∫
Y
φc dν

)
,

(3.6)

where φo is a maximizer of both semi-dual problems. Also, the following duality holds:

Kc(µ, ν) = max
(φ,ψ)∈L1(µ)×L1(ν)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
, (3.7)

where (φo, φ
c
o) is a maximizer of the dual problem.

Proof. Tightness of µ and ν guarantees existence of optimal transport plans by Theorem 2.3.

Hence, we can invoke the function in (iii) of Theorem 3.2; denote it as φo. Then, we have

already seen that (3.5) holds. We have also mentioned (φo, φ
c
o) ∈ L1(µ)× L1(ν) in Remark

3.4. Hence, we can see that the first equality of (3.6) holds; for the same reason, we have

(3.7). To verify the second equality of (3.6), notice that for any φ : X → [−∞,∞) that is

proper and c-concave, we have φ+ ∈ L1(µ) and (φc)+ ∈ L1(ν) as in Remark 3.4. Hence, as

in the proof of Theorem 3.2, we have∫
X
φ dµ+

∫
Y
φc dν ≤ Kc(µ, ν).

This shows the second equality of (3.6). Due to (3.5), we can see that the right-hand sides

of (3.6) and (3.7) admit a maximizer: φo or (φo, φ
c
o).

Remark 3.6. In Corollary 3.2, we can weaken the constraint of the semi-dual problem

(φ, φc) ∈ L1(µ)× L1(ν) by only requiring φ : X → [−∞,∞) is proper and measurable such

that φc : Y → [−∞,∞) is also proper. The latter implies that φ+ ∈ L1(µ) and (φc)+ ∈ L1(ν)

as in the proof of Theorem 3.2 due to (MC). Hence, we still have∫
X
φ dµ+

∫
Y
φc dν ≤ Kc(µ, ν).
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Remark 3.7. The c-concave function φo in Corollary 3.2 enjoys regularity properties that

inherit from c. For instance, boundedness of c implies that φo and φco are bounded. Next,

suppose we have equipped X and Y with compatible metrics, respectively. Then, uniform

continuity of c implies that both φo and φco are uniformly continuous by Proposition 3.3.

Similarly, L-Lipschitzness of c implies that both φo and φco are L-Lipschitz. Consequently,

we can replace the constraint L1(µ)×L1(ν) of the dual problem with a smaller class without

decreasing the maximum as long as that class contains (φo, φ
c
o) as shown in the following

lemmas.

Lemma 3.2. Equipping X and Y with their compatible metrics, suppose c : X × Y → R is

uniformly continuous and bounded. If µ and ν are tight, the following duality holds:

Kc(µ, ν) = max
(φ,ψ)∈Cb(X )×Cb(Y)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
,

where the right-hand side admits a maximizer.

Proof. We can apply Corollary 3.2; boundedness of c implies Kc(µ, ν) <∞ and (MC). Then,

φco ∈ Cb(X ) and φco ∈ Cb(Y) are guaranteed by Proposition 3.3. As discussed in Remark 3.7,

max
(φ,ψ)∈Cb(X )×Cb(Y)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
= max

(φ,ψ)∈L1(µ)×L1(ν)
φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)

as (φo, φ
c
o) ∈ Cb(X )× Cb(Y) ⊂ L1(µ)× L1(ν) is a maximizer of the dual problem.

Remark 3.8. Notice that 3.2 is applicable if c : X × Y → R is a continuous cost function

and X ,Y are compact metrizable spaces.

Lemma 3.3. Equipping X and Y with their compatible metrics, say ρX and ρY , respectively,

suppose c : X ×Y → R is L-Lipschitz and bounded. If µ and ν are tight, the following duality

holds:

Kc(µ, ν) = max
(φ,ψ)∈BL(X ,ρX )×BL(Y,ρY )

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
,

where the right-hand side admits a maximizer.

Proof. We can apply Corollary 3.2; boundedness of c implies Kc(µ, ν) <∞ and (MC). Then,

φco ∈ BL(X , ρX ) and φco ∈ BL(Y , ρY) are guaranteed by Proposition 3.3; in fact, φo and φ
c
o

are L-Lipschitz. As discussed in Remark 3.7,

max
(φ,ψ)∈BL(X ,ρX )×BL(Y,ρY )

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
= max

(φ,ψ)∈L1(µ)×L1(ν)
φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)

as (φo, φ
c
o) ∈ BL(X , ρX )×BL(Y , ρY) ⊂ L1(µ)×L1(ν) is a maximizer of the dual problem.
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Lastly, we extend the duality result to the case where c is lower semi-continuity. The key

idea is to approximate c with a sequence of bounded Lipschitz—hence uniformly continuous—

functions by Lemma 2.2.

Theorem 3.3 (Kantorovich Duality). Suppose c is lower semi-continuous. If µ and ν

are tight, the Kantorovich duality holds:

Kc(µ, ν) = sup
(φ,ψ)∈Cb(X )×Cb(Y)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
. (3.8)

Proof. It suffices prove ≤ instead of = in (3.8). As c is lower semi-continuous and bounded

below, we can find a sequence (cn)n∈N of uniformly continuous and bounded functions such

that cn ↑ c by Lemma 2.2. Let γn be an optimal transport plan with respect to the cost

function cn; the existence is guaranteed by Theorem 2.3. The same theorem states the

compactness of Π(µ, ν). Hence, by taking a subsequence if necessary, we may assume that

(γn)n∈N converges weakly to some γ ∈ Π(µ, ν). Then the duality follows since

Kc(µ, ν) ≤
∫
c dγ

= lim
m→∞

∫
cm dγ (∵ monotone convergence theorem)

= lim
m→∞

(
lim
n→∞

∫
cm dγn

)
(∵ γn → γ weakly)

≤ lim sup
n→∞

∫
cn dγn (∵ cm ≤ cn for n ≥ m).

Now, we apply Lemma 3.2 to each cn, which is possible since cn is continuous and bounded

and thus Πcn(µ, ν) is nonempty. Hence,∫
cn dγn = max

(φ,ψ)∈Cb(X )×Cb(Y)
φ⊕ψ≤cn

(∫
X
φ dµ+

∫
Y
ψ dν

)
≤ sup

(φ,ψ)∈Cb(X )×Cb(Y)
φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
,

where the last inequality holds since cn ≤ c. Therefore, we have

Kc(µ, ν) ≤ sup
(φ,ψ)∈Cb(X )×Cb(Y)

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
.

Remark 3.9. In Theorem 3.3, one can show the following:

Kc(µ, ν) = sup
(φ,ψ)∈BL(X ,ρX )×BL(Y,ρY )

φ⊕ψ≤c

(∫
X
φ dµ+

∫
Y
ψ dν

)
,

where ρX and ρY are compatible metrics of X and Y , respectively; simply use Lemma 3.3

instead of Lemma 3.2 in the proof of Theorem 3.3.
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3.4 Omitted proofs

Proof of Proposition 3.2. (i) By definition, we have φc(y) ≤ c(x, y) − φ(x), which implies

φ(x)−c(x, y) ≤ −φc(y). As c is real-valued, by adding c(x, y), we have φ(x) ≤ c(x, y)−φc(y)
for all (x, y) ∈ X × Y . Therefore, for all x ∈ X ,

φcc(x) = inf
y∈Y

(c(x, y)− φc(y)) ≥ φ(x).

(ii) Clearly, φ = (φc)c implies that φ is c-concave by definition. Conversely, if φ is c-concave,

i.e., φ = ψc for some ψ : Y → [−∞,∞], by applying (i) to ψ based on symmetric, we have

φc = ψcc ≥ ψ. From φc ≥ ψ, we have φcc ≤ ψc = φ. Hence, φ = φcc.

Proof of Proposition 3.3. (i) Let φ : X → [−∞,∞] be a c-concave function and |c| ≤ M

for some M > 0. Then, φc(y) ≤ c(x, y) − φ(x) ≤ M − φ(x) implies that φc is bounded

above by some L > 0. This also means that φ = (φc)c is bounded above by symmetry and

φ = φcc ≥ −M − L, i.e., φ is bounded below.

(ii) Let φ : X → [−∞,∞] be a c-concave function so that φ = (φc)c. Then for each y ∈ Y a

function x 7→ c(x, y)−φc(y) is continuous as c is continuous, thus φ is upper semi-continuous

since it is defined by the infimum of a collection of upper semi-continuous functions.

(iii) Nothing to prove if ∂cφ = ∅. Assume ∂cφ ̸= ∅, equivalently, φ : X → [−∞,∞) is proper.

Suppose a sequence (xn, yn) in ∂cφ converges to (x, y) ∈ X × Y . Then,

c(x, y) = lim
n→∞

c(xn, yn) (∵ continuity of c)

≤ lim sup
n→∞

φ(xn) + lim sup
n→∞

φc(yn) (∵ (xn, yn) ∈ ∂cφ)

≤ φ(x) + φc(y) (∵ upper semi-continuity)

≤ c(x, y) (∵ Proposition 3.1).

(iv) Let ρ1 and ρ2 be metrics on X and Y , respectively. Fix a proper c-concave function

φ : X → [−∞,∞) be a c-concave function. Uniform continuity of c implies that for ε > 0,

there exists δ > 0 such that ρ1(x, x
′)+ρ2(y, y

′) ≤ δ implies |c(x, y)−c(x′, y′)| ≤ ε. Therefore,

whenever ρ1(x, x
′) ≤ δ, we have |c(x, y)− c(x′, y)| ≤ ε for all y ∈ Y . Hence,

φ(x) = inf
y∈Y

(c(x, y)− φc(y)) ≤ inf
y∈Y

(c(x′, y)− φc(y)) + ε = φ(x′) + ε,

and by symmetry φ(x′) ≤ φ(x)+ε. This means φ must be real-valued and |φ(x)−φ(x′)| ≤ ε.

Hence, φ is uniformly continuous.

(v) Mimic the proof of (iv): |c(x, y)−c(x′, y)| ≤ Lρ1(x, x
′) implies |φ(x)−φ(x′)| ≤ Lρ1(x, x

′).
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Proof of Theorem 3.1. Fix (x0, y0) ∈ Π. For each x ∈ X , let

φ(x) = inf

{
n∑
i=1

(c(xi, yi−1)− c(xi−1, yi−1)) + c(x, yn)− c(xn, yn) : ∀n ∈ N, (xi, yi) ∈ Π

}
.

Clearly, φ : X → [−∞,∞) since φ(x) ≤ c(x, y0) − c(x0, y0). Also, due to c-cyclical mono-

tonicity of Π, we have φ(x0) ≥ 0 and φ(x)+ c(x0, y)− c(x, y) ≥ 0 and hence φ(x) > −∞ for

any (x, y) ∈ Π, which proves φ is proper. For each y ∈ Y , let

−ψ(y) = inf

{
n∑
i=1

(c(xi, yi−1)− c(xi−1, yi−1))− c(xn, yn) : ∀n ∈ N, (xi, yi) ∈ Π, yn = y

}
.

By definition, −ψ(y) <∞, equivalently ψ(y) > −∞ if and only if (x, y) ∈ Π for some x ∈ X .

One can verify that

φ(x) = inf
y∈Y

(c(x, y)− ψ(y)) ,

which proves φ = ψc and hence φ is c-concave. For each (x, y) ∈ Π, we claim that φ(x) +

φc(y) = c(x, y). Clearly, φ(x) + φc(y) ≤ c(x, y) holds since φ is proper. Since φ(x) > −∞,

for each ε > 0 we can find yε ∈ Y such that

φ(x) ≤ c(x, yε)− ψ(yε) < φ(x) + ε.

Then

−ψ(y) ≤ −ψ(yε) + c(x, yε)− c(x, y) < φ(x)− c(x, y) + ε,

where the first inequality holds by the definition of −ψ. This proves −ψ(y) ≤ φ(x)− c(x, y)

and hence c(x, y) ≤ φ(x) + ψ(y).

Proof of Proposition 3.4. Let γ be an optimal transport plan and suppose supp(γ) is not

c-cyclically monotone. By definition, we can find (x1, y1), . . . , (xn, yn) ∈ supp(γ) and a

permutation σ ∈ Perm(n) such that

C :=
n∑
i=1

c(xi, yi)−
n∑
i=1

c(xi, yσ(i)) > 0.

As c is continuous, for each i ∈ [n], we can find open neighborhoods Ui ⊂ X and Vi ⊂ Y of

xi and yi, respectively, such that

c(x, y) > c(xi, yi)− ε ∀(x, y) ∈ Ui × Vi,

c(x, y) < c(xi, yσ(i)) + ε ∀(x, y) ∈ Ui × Vσ(i),

where ε > 0 is a constant such that ε < C
2n
. For each i ∈ [n], let Si = Ui × Vi; then,

(xi, yi) ∈ supp(γ) implies γ(Si) > 0; hence, we can define γi(A) := γ(A ∩ Si)/γ(Si) for all
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A ∈ B(X × Y); also, let µi and νi be the marginals of γi on X and Y , respectively. Take

η > 0 such that nη < mini∈[n] γ(Si) and let

γ⋆ = γ − η
n∑
i=1

γi + η

n∑
i=1

µi ⊗ νσ(i).

By definition,

γ(S)− η
n∑
i=1

γi(S) ≥ γ(S)− 1

n

n∑
i=1

γ(S ∩ Si) ≥ 0 ∀S ∈ B(X × Y).

Hence, γ⋆ ∈ P(X × Y). Also, γ⋆ ∈ Π(µ, ν) follows as

γ⋆(A× Y) = γ(A× Y)− η

n∑
i=1

µi(A) + η
n∑
i=1

µi(A) = µ(A) ∀A ∈ B(X ),

γ⋆(X ×B) = γ(X ×B)− η
n∑
i=1

νi(B) + η
n∑
i=1

νσ(i)(B) = ν(B) ∀B ∈ B(Y).

For each i ∈ [n], as γi and µi ⊗ νσ(i) are concentrated on Si and Ui × Vσ(i), respectively,∫
c dγi ≥ c(xi, yi)− ε and

∫
c dµi ⊗ νσ(i) ≤ c(xi, yσ(i)) + ε.

Therefore, ∫
c dγ⋆ =

∫
c dγ − η

n∑
i=1

∫
c dγi + η

n∑
i=1

∫
c dµi ⊗ νσ(i)

≤
∫
c dγ − η

n∑
i=1

(c(xi, yi)− ε) + η
n∑
i=1

(
c(xi, yσ(i)) + ε

)
<

∫
c dγ,

where the last strict inequality holds since the assumption Kc(µ, ν) <∞ implies
∫
c dγ <∞.

This contradicts that γ is optimal. Hence, supp(γ) must be c-cyclically monotone.
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4 Applications of Optimality and Duality

Settings As in Section 3, X and Y are separable metrizable spaces unless otherwise stated;

we consider the Kantorovich problem between (X ,B(X ), µ) and (Y ,B(Y), ν) with a cost

function c.

4.1 Stability of optimal transport plans

Given sequences (µn)n∈N and (νn)n∈N in P(X ) and P(Y), respectively, consider a sequence

(γn)n∈N in P(X ) such that γn is an optimal transport plan from µn to νn, i.e., γn ∈ Πc(µn, νn),

for all n ∈ N. If (µn)n∈N and (νn)n∈N converge weakly to µ ∈ P(X ) and ν ∈ P(Y),

respectively, we show that (γn)n∈N has a subsequence converges weakly to some optimal

transport plan from µ and ν, i.e., the weak limit is contained in Πc(µ, ν). If Πc(µ, ν) is a

singleton, i.e., there exists a unique optimal transport plan from µ to ν, then the whole

(γn)n∈N sequence converges weakly to that unique optimal transport plan.

Lemma 4.1. Let Z be a separable metric space. Fix N ∈ N.

(i) For γ ∈ P(Z), let γ⊗N ∈ P(ZN) denote the product of N copies of γ. Then,

supp(γ⊗N) = supp(γ)N .

(ii) Let (γn)n∈N be a sequence in P(Z) converging weakly to some γ ∈ P(Z). Then,

(γ⊗Nn )n∈N converges weakly to γ⊗N in P(ZN).

Proof. We prove for N = 2. Let S = supp(γ). Note that S2 = S × S ⊂ Z ×Z is closed and

γ⊗2(S2) = γ(S)2 = 1. Hence, supp(γ⊗2) ⊂ S2. Now, suppose (z1, z2) ∈ Z2\supp(γ⊗2); by

definition, we can find an open neighborhood U of (z1, z2) such that γ⊗2(U) = 0. Further

assume (z1, z2) ∈ S2, i.e., z1, z2 ∈ S. For any r > 0, let Br(z) ⊂ Z denote the open ball

of radius r centered at z ∈ Z. We can find r > 0 such that Br(z1) × Br(z2) ⊂ U . Then,

γ⊗2(Br(z1)×Br(z2)) = 0 as γ⊗2(U) = 0, which implies γ(Br(z1)) = 0 or γ(Br(z2)) = 0. This

contradicts z1, z2 ∈ S. Therefore, Z2\supp(γ⊗2) ⊂ Z2\S2. Hence, supp(γ⊗2) = S2. For (ii),

refer to Theorem 2.8 of [Bil99].

Lemma 4.2. Let (γn)n∈N be a sequence in P(X ×Y) converging weakly to γ ∈ P(X ×Y).

Suppose c : X × Y → R is continuous and supp(γn) is c-cyclically monotone for all n ∈ N.
Then, supp(γ) is c-cyclically monotone.

Proof. Let Z = X × Y . For each N ∈ N, define

AN =

{
((x1, y1), . . . , (xN , yN)) ∈ ZN :

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)) ∀σ ∈ Perm(N)

}
.
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Note that c-cyclical monotonicity implies supp(γn)
N ⊂ AN . Hence, using Lemma 4.1, we

have

γ⊗Nn (AN) ≥ γ⊗Nn (supp(γn)
N) = γ⊗Nn (supp(γ⊗Nn )) = 1.

As c is continuous, AN is a closed set. By Theorem 2.1, we have

γ⊗N(AN) ≥ lim sup
n→∞

γ⊗Nn (AN) = 1.

Hence, we conclude supp(γ⊗N) ⊂ AN . As supp(γ
⊗N) = supp(γ)N , we have supp(γ)N ⊂ AN .

Since this holds for all N ∈ N, we conclude that supp(γ) is c-cyclically monotone.

Theorem 4.1 (Stability of Optimal Transport Plans). Let X and Y be Polish spaces.

Suppose c : X × Y → R is continuous and Kc(µ, ν) <∞. Assume∫
X
c(x, y) dµ(x) <∞ ∀y ∈ Y and

∫
Y
c(x, y) dν(y) <∞ ∀x ∈ X . (MC)

Let (µn)n∈N and (νn)n∈N be sequences converging weakly to µ in P(X ) and ν in P(Y),

respectively. For each n ∈ N, assume Kc(µn, νn) <∞ and pick γn ∈ Πc(µn, νn).

(i) (γn)n∈N has a subsequence that converges weakly to some γ ∈ Πc(µ, ν).

(ii) (γn)n∈N converges weakly to γ⋆ provided Πc(µ, ν) = {γ⋆}.

Proof. Recall that supp(γn) is c-cyclically monotone for all n ∈ N by Proposition 3.4. Also,

(γn)n∈N has a subsequence that converges weakly to some γ ∈ Π(µ, ν) by Proposition 2.4.

By Lemma 4.2, supp(γ) is c-cyclically monotone, which implies γ ∈ Πc(µ, ν) by Theorem

3.2. Now, suppose Πc(µ, ν) = {γ⋆}. By Theorem 2.2, any subsequence, say □, of (γn)n∈N

must converge weakly. Applying (i) to the sequence □, we conclude that □ has a further

subsequence converging to γ⋆, which means the weak limit of □ must be γ⋆. In summary,

any subsequence of (γn)n∈N converges weakly to γ⋆, which proves that the whole sequence

(γn)n∈N must converge weakly to γ⋆.

4.2 Kantorovich-Rubinstein theorem

We study the case where c is a metric on X = Y . In this case, c-concavity and c-transforms

become very simple as follows.

Lemma 4.3. Given a set X , suppose c : X ×X → R+ is a metric on X .5 A proper function

φ : X → [−∞,∞) is c-concave if and only if φ is real-valued and

|φ(x)− φ(y)| ≤ c(x, y) ∀x, y ∈ X .

In this case, φc = −φ.
5We may assume c is a pseudometric.
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Proof. If φ is c-concave, φ = φcc implies that for any x1, x2 ∈ X ,

φ(x1) = inf
y∈X

(c(x1, y)− φc(y)) ≤ inf
y∈X

(c(x2, y)− φc(y)) + c(x1, x2) = φ(x2) + c(x1, x2).

This implies that φ ≡ −∞ if φ(x) = −∞ for some x ∈ X . As φ is proper, we conclude that φ

be real-valued and φ(x1)−φ(x2) ≤ c(x1, x2) holds; by symmetry, |φ(x1)−φ(x2)| ≤ c(x1, x2).

Conversely, |φ(x)− φ(y)| ≤ c(x, y) implies −φ(x) ≤ c(x, y)− φ(y) for all x, y ∈ X . Hence,

−φ(x) = inf
y∈X

(c(x, y)− φ(y)) ,

where the equality is due to c(x, x) = 0. Hence, φc = −φ.

Theorem 4.2 (Kantorovich-Rubinstein). Suppose c be a metric on X = Y that is con-

tinuous with respect to the product topology of X × X . Assume∫
X
c(x, x0) dµ(x) +

∫
X
c(x, x0) dν(x) <∞ ∃x0 ∈ X .

If µ and ν are tight,

inf
γ∈Π(µ,ν)

∫
X×X

c dγ = sup
φ : X→R
∥φ∥c≤1

(∫
X
φ dµ−

∫
X
φ dν

)
, (4.1)

where we define for any φ : X → R,

∥φ∥c := sup
x ̸=y

|φ(x)− φ(y)|
c(x, y)

.

Moreover, the right-hand side of (4.1) admits a maximizer.

Proof. Notice that Kc(µ, ν) <∞ since∫
X×X

c(x, y) dµ⊗ ν ≤
∫
X
c(x, x0) dµ(x) +

∫
X
c(x, x0) dν(x) <∞.

We use the semi-duality (3.6) of Corollary 3.2:

Kc(µ, ν) = sup
φ : X→[−∞,∞)

proper and c-concave

(∫
X
φ dµ+

∫
X
φc dν

)
.

Due to the Lemma 4.3,

sup
φ : X→[−∞,∞)

proper and c-concave

(∫
X
φ dµ+

∫
X
φc dν

)
= sup

φ : X→R
∥φ∥c≤1

(∫
X
φ dµ−

∫
X
φ dν

)
.

Remark 4.1. Remember that tightness of µ and ν—which ensures Πc(µ, ν) ̸= ∅—is required

to invoke Corollary 3.2. Theorem 11.8.2 of [Dud02] shows that (4.1) still holds without

tightness.
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5 Optimal Transport in Euclidean Spaces

This section studies optimal transport problems between Euclidean spaces equipped with

their Borel σ-algebras. So far, we have defined optimal transport problems between arbi-

trary probability spaces and derived general results (optimality, (semi-)duality, etc.). In the

Euclidean space case, we can establish much more concrete results that not only provide rich

theory, but also play a crucial role in a number of optimal transport applications.

Settings Throughout the section, both Monge and Kantorovich problems are considered

between (Rd,B(Rd), µ) and (Rd,B(Rd), ν) with d ∈ N, i.e., X = Y = Rd equipped with

the Borel σ-algebra on Rd, where c denotes the cost function; we call c the quadratic cost

if c(x, y) = 1
2
∥x − y∥22 for all x, y ∈ Rd. When d = 1, we write Fµ and Fν to denote the

distribution functions of µ and ν, respectively, as in Lemma 1.2.

Remark 5.1. As X = Y = Rd, there are many options for c, for instance, any distance-

based function, say c(x, y) = ∥x−y∥2, leads to a natural notion of the unit cost to transport

from x ∈ Rd to y ∈ Rd. On the other hand, if we assume instead X = Rd1 and Y = Rd2 with

d1 ̸= d2, it is unclear how to design a function c over X × Y that represents intuitive cost

associated with x ∈ X and y ∈ Y . This is the rationale behind the setting X = Y = Rd.

5.1 One-dimensional analysis

Letting d = 1, we consider a case where c(x, y) = h(x−y) for some convex function h : R → R
that is bounded below, e.g., c(x, y) = |x−y|p for p ≥ 1. In this setting, we can derive a closed

form of an optimal transport plan thanks to Theorem 3.2, which leads to the transport plan

(F−1
µ , F−1

ν )#λ introduced in Proposition 1.5. The key idea is the following “co-monotonicity”.

y1

y

y2

x2xx1

A

B

U1

U2

Figure 2: Proof of Lemma 5.1.
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Lemma 5.1. Letting d = 1, for γ ∈ Π(µ, ν), the following are equivalent.

(i) For any (x1, y1), (x2, y2) ∈ supp(γ) satisfying x1 < x2, we have y1 ≤ y2.

(ii) γ = (F−1
µ , F−1

ν )#λ.

Proof. Let Fγ be the distribution function of γ. Suppose (i). Fix x, y ∈ R. If we prove that

Fγ(x, y) = min{Fµ(x), Fν(y)}, then (ii) follows by Proposition 1.5. Let A = (−∞, x]×(y,∞)

and B = (x,∞)× (−∞, y] so that

Fγ(x, y) + γ(A) = Fµ(x) and Fγ(x, y) + γ(B) = Fν(y).

Observe that at least one of supp(γ) ∩ A and supp(γ) ∩ B must be empty; otherwise, we

can find (x1, y1) ∈ supp(γ) ∩ A and (x2, y2) ∈ supp(γ) ∩ B, which leads to x1 ≤ x < x2

and y2 ≤ y < y1, contradicting (i). Accordingly, γ(A) = 0 or γ(B) = 0 must hold, which

implies Fγ(x, y) = min{Fµ(x), Fν(y)}. Suppose (ii). Suppose (x1, y1), (x2, y2) ∈ supp(γ)

satisfy x1 < x2 and y1 > y2. By definition, we can find ε > 0 such that x1 + ε < x2 − ε,

y1 − ε > y2 + ε, and γ(U1), γ(U2) > 0, where U1 := (x1 − ε, x1 + ε) × (y1 − ε, y1 + ε) and

U2 := (x2 − ε, x2 + ε) × (y2 − ε, y2 + ε). Pick x, y ∈ R such that x1 + ε < x < x2 − ε and

y1 − ε > y > y2 + ε. Then,

Fµ(x) = Fγ(x, y) + γ((−∞, x]× (y,∞)) ≥ Fγ(x, y) + γ(U1) > Fγ(x, y),

Fν(y) = Fγ(x, y) + γ((x,∞)× (−∞, y]) ≥ Fγ(x, y) + γ(U2) > Fγ(x, y),

which contradicts Fγ(x, y) = min{Fµ(x), Fν(y)}.

Proposition 5.1. Letting d = 1, suppose c(x, y) = h(x−y) for some strictly convex function

h : R → R that is bounded below. If the optimal transport cost is finite, (F−1
µ , F−1

ν )#λ is the

unique optimal transport plan.

Proof. Let γ be an optimal transport plan, which must exists by Theorem 2.3. As the

optimal transport cost is assumed to be finite, supp(γ) is c-cyclically monotone by Propo-

sition 3.4. We prove that strict convexity of h implies (i) of Lemma 5.1. To this end,

suppose (x1, y1), (x2, y2) ∈ supp(γ) satisfy x1 < x2 and y1 > y2. By construction, we have

x1 − y1 < x1 − y2, x2 − y1 < x2 − y2, which implies, by strict convexity,

h(x1 − y2) <
(x2 − x1)h(x1 − y1) + (y1 − y2)h(x2 − y2)

x2 − x1 + y1 − y2
,

h(x2 − y1) <
(y1 − y2)h(x1 − y1) + (x2 − x1)h(x2 − y2)

x2 − x1 + y1 − y2
.

Combining the two inequalities, h(x1 − y2) + h(x2 − y1) < h(x1 − y1) + h(x2 − y2), which

contradicts c-cyclical monotonicity of supp(γ). Therefore, (i) of Lemma 5.1 must hold.

Hence, γ = (F−1
µ , F−1

ν )#λ, concluding that (F−1
µ , F−1

ν )#λ is the unique optimal transport

plan; we also conclude that the support of (F−1
µ , F−1

ν )#λ is c-cyclically monotone.
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Next, we consider a case where h is convex but may not be strictly convex; in this case,

(F−1
µ , F−1

ν )#λ is still an optimal transport plan, but uniqueness is not guaranteed. To see

this, we use the following lemma to approximate h using a strictly convex function.

Lemma 5.2. Let h : R → R be a convex function that is bounded below. If h is not a

constant function, for any ε > 0, there exists a strictly convex function hε : R → R such that

h ≤ hε ≤ (1 + ε)h+ ε.

Proof. Without loss of generality, suppose h ≥ 0. As a convex function bounded below by

an affine function, we can find a, b ∈ R such that h(x) ≥ ax+ b for all x ∈ R. Since h is not

a constant function, we may assume a ̸= 0. Also, h ≥ 0 implies h(x) ≥ (ax+ b)+. Let

f(x) =

√
4 + (ax+ b)2 + ax+ b

2
∀x ∈ R,

then 0 ≤ f ≤ 1 + h and f is strictly convex. Hence, for ε > 0, define hε = h + εf . Then,

h ≤ hε ≤ (1 + ε)h+ ε.

Theorem 5.1. Letting d = 1, suppose c(x, y) = h(x−y) for some convex function h : R → R
that is bounded below. Then, (F−1

µ , F−1
ν )#λ is an optimal transport plan. Hence,

Kc(µ, ν) = inf
γ∈Π(µ,ν)

∫
R×R

h(x− y) dγ(x, y) =

∫ 1

0

h(F−1
µ (u)− F−1

ν (u)) du. (5.1)

Proof. First, if h is a constant function, any transport plan is optimal; then, there is nothing

to prove. Assuming h is not a constant function, for fixed ε > 0, take a strictly convex

function hε as in Lemma 5.2. Then, we have∫
R×R

hε(x− y) d(F−1
µ , F−1

ν )#λ(u) = inf
γ∈Π(µ,ν)

∫
R×R

hε(x− y) dγ(x, y).

This follows by applying Proposition 5.1 to the cost function cε(x, y) = hε(x − y) provided

the optimal transport cost given cε is finite; without finiteness, this is still true as both sides

are simply infinite. Hence, using h ≤ hε ≤ (1 + ε)h+ ε,∫ 1

0

h(F−1
µ (u)− F−1

ν (u)) du =

∫
R×R

h(x− y) d(F−1
µ , F−1

ν )#λ(u)

≤
∫
R×R

hε(x− y) d(F−1
µ , F−1

ν )#λ(u)

= inf
γ∈Π(µ,ν)

∫
R×R

hε(x− y) dγ(x, y)

≤ (1 + ε) inf
γ∈Π(µ,ν)

∫
R×R

h(x− y) dγ(x, y) + ε.

As this is true for any ε > 0, we have (5.1) and (F−1
µ , F−1

ν )#λ is an optimal transport

plan.
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Recall from Proposition 1.5 that (F−1
µ , F−1

ν )#λ is induced by F−1
ν ◦ Fµ provided Fµ is

continuous. Accordingly, not only F−1
ν ◦ Fµ is an optimal transport map, but also the

Monge and the Kantorovich problems have the same optimal transport cost. Moreover, by

Proposition 1.8, we can establish uniqueness of optimal transport maps as follows.

Corollary 5.1. Letting d = 1, suppose c(x, y) = h(x−y) for some convex function h : R → R
that is bounded below. If Fµ is continuous, F−1

ν ◦ Fµ is an optimal transport map and thus

Mc(µ, ν) = inf
T∈T (µ,ν)

∫
R
h(x− T (x)) dµ(x) =

∫
R
h(x− F−1

ν ◦ Fµ(x)) dµ(x) = Kc(µ, ν).

If h is strictly convex and the optimal transport cost is finite, F−1
ν ◦ Fµ is a µ-almost every-

where unique optimal transport map.

Example 5.1. Note that h(x) = |x| is convex but not strictly convex. Let µ = λ and ν

be the Lebesgue measure supported on [1/2, 3/2] so that F−1
ν ◦ Tµ(x) = x+ 1

2
is an optimal

transport map for the cost function c(x, y) = |x − y|; the optimal transport cost is 1/2.

However, there are other optimal transport maps, e.g.,

T (x) =

x+ 1 if x ≤ 1,

x if x > 1.

Then, T#µ = ν holds and the cost incurred by T is also 1/2, which means that T is optimal.

5.2 Quadratic cost

We study the case where c is the quadratic cost, i.e., c(x, y) = 1
2
∥x− y∥22 for all x, y ∈ Rd. In

this special case, all the notions in Definition 3.1 that we used to establish optimality and

(semi-)duality results boil down to well-known concepts in convex analysis. Particularly, as

mentioned in Remark 3.1, if c is the quadratic cost, c-cyclical monotonicity is equivalent to

cyclical monotonicity.

Definition 5.1. A subset Π ∈ Rd × Rd is said to be cyclically monotone if

n∑
i=1

⟨xi, yi⟩ ≥
n∑
i=1

⟨xi, yσ(i)⟩

for any n ∈ N, (x1, y1), . . . , (xn, yn) ∈ Π, and any permutation σ ∈ Perm(n).

Next, we show that c-transform leads to the conjugate.

Definition 5.2. The conjugate of ϕ : Rd → [−∞,∞] is a function ϕ∗ : Rd → [−∞,∞]

defined by

ϕ∗(y) = sup
x∈Rd

(⟨x, y⟩ − ϕ(x)) .
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For φ : Rd → [−∞,∞], one can verify that

∥y∥22
2

− φc(y) =
∥y∥22
2

− inf
x∈Rd

(
∥x− y∥22

2
− φ(x)

)
= sup

x∈Rd

(
⟨x, y⟩ −

(
∥x∥22
2

− φ(x)

))
.

In other words,
∥ · ∥22
2

− φc =

(
∥ · ∥22
2

− φ

)∗

, (5.2)

showing that c-transform indeed leads to the conjugate. The following proposition is an

analogue to Proposition 3.1, collecting some basic properties of the conjugate.

Proposition 5.2. Fix ϕ : Rd → [−∞,∞].

(i) ϕ∗ ≡ ∞ if ϕ(x) = −∞ for some x ∈ Rd.

(ii) ϕ∗ ≡ −∞ if ϕ ≡ ∞.

Now, suppose ϕ : Rd → (−∞,∞] and ϕ is proper.

(iii) ϕ∗ : Rd → (−∞,∞].

(v) ϕ(x) + ϕ∗(y) ≥ ⟨x, y⟩ for all (x, y) ∈ Rd × Rd.

Remark 5.2. Note that ϕ∗ in (iii) of Proposition 5.2 might not be proper, i.e., ϕ∗ ≡ ∞ can

happen. For instance, consider ϕ(x) = log |x|.

Next, we characterize c-concave functions. Due to the connection (5.2) of c-transform

and the conjugate, one can deduce that c-concavity is related to ϕ = ϕ∗∗, which turns out

to be the usual convexity plus lower semi-continuity.

Definition 5.3. ϕ : Rd → [−∞,∞] is convex if its epigraph

epi(ϕ) := {(x, y) ∈ Rd × R : y ≥ ϕ(x)}

is a convex set.

Remark 5.3. In Definition 5.3, if we consider ϕ : Rd → (−∞,∞], convexity is equivalent to

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y)

for any x, y ∈ Rd and t ∈ [0, 1].

The following proposition revisits Proposition 3.2 in the context of the conjugate.
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Proposition 5.3. Fix ϕ : Rd → [−∞,∞].

(i) ϕ∗∗ ≤ ϕ.

(ii) ϕ = ϕ∗∗ if and only if ϕ is convex and lower semi-continuous; in this case, only one of

the following is true:

(1) ϕ ≡ −∞ and ϕ∗ ≡ ∞.

(2) ϕ ≡ ∞ and ϕ∗ ≡ −∞.

(3) ϕ : Rd → (−∞,∞] and ϕ∗ : Rd → (−∞,∞], where both ϕ and ϕ∗ are proper.

Now, by virtue of (5.2), one can verify that φ : Rd → [−∞,∞] is c-concave if and only if
∥·∥22
2

− φ is convex and lower semi-continuous, or equivalently

∥ · ∥22
2

− φ =

(
∥ · ∥22
2

− φ

)∗∗

.

Lastly, we show that c-superdifferential leads to the usual subdifferential.

Definition 5.4. The subdifferential of ϕ : Rd → (−∞,∞] at x ∈ Rd is defined by

∂ϕ(x) =
{
y ∈ Rd : ϕ(z) ≥ ϕ(x) + ⟨z − x, y⟩ ∀z ∈ Rd

}
.

An element of ∂ϕ(x) is called a subgradient of ϕ at x. The subdifferential of ϕ is defined by

∂ϕ =
{
(x, y) ∈ Rd × Rd : y ∈ ∂ϕ(x)

}
.

Proposition 5.4. If ϕ : Rd → (−∞,∞] is proper, ϕ(x) + ϕ∗(y) = ⟨x, y⟩ if and only if

y ∈ ∂ϕ(x). Therefore,

∂ϕ = {(x, y) ∈ Rd × Rd : ϕ(x) + ϕ∗(y) = ⟨x, y⟩}.

Proof. Note that ϕ(z) ≥ ϕ(x) + ⟨z − x, y⟩ for all z ∈ Rd if and only if

⟨z, y⟩ − ϕ(z) ≤ ⟨x, y⟩ − ϕ(x) ∀z ∈ Rd ⇔ ϕ∗(y) = ⟨x, y⟩ − ϕ(x).

Hence, y ∈ ∂ϕ(x) if and only if ϕ∗(y) = ⟨x, y⟩−ϕ(x); as this is possible only when ϕ(x) <∞,

i.e., x ∈ dom(ϕ), this is equivalent to ϕ(x) + ϕ∗(y) = ⟨x, y⟩.

We can now verify the connection between c-superdifferential and the subdifferential.

Suppose φ : Rd → [−∞,∞) is proper and let ϕ =
∥·∥22
2

− φ. Then, ϕ : Rd → (−∞,∞] is

proper, and we have

∂cφ =

{
(x, y) ∈ Rd × Rd : φ(x) + φc(y) =

∥x− y∥22
2

}
=

{
(x, y) ∈ Rd × Rd : ϕ(x) + ϕ∗(y) = ⟨x, y⟩

}
= ∂ϕ,
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where the second equality follows from (5.2) and the last equality is from Proposition 5.4.

Lastly, we present Rockafellar’s result on cyclical monotonicity, which we have mentioned

in Remark 3.1; though we have already proved this in Theorem 3.1, we state this again for

completeness.

Theorem 5.2 (Rockafellar). If Π ⊂ Rd × Rd is cyclically monotone, there exists a proper

convex function ϕ : Rd → (−∞,∞] such that Π ⊂ ∂ϕ.

Based on the aforementioned connections, we can derive the optimality result for the

quadratic cost by simply restating Theorem 3.2 using the language of convex analysis.

Theorem 5.3 (Knott-Smith Optimality). Let c be the quadratic cost and suppose∫
Rd

∥x∥22 dµ(x) <∞ and

∫
Rd

∥y∥22 dν(y) <∞.

For γ ∈ Π(µ, ν), the following are equivalent.

(i) γ is an optimal transport plan.

(ii) supp(γ) is cyclically monotone.

(iii) There exists a proper convex function ϕo : Rd → (−∞,∞] such that supp(γ) ⊂ ∂ϕo.

Remark 5.4. As c-concavity corresponds to convexity plus lower semi-continuity, we should

have stated (iii) of Theorem 5.3 as follows: there exists a proper, convex, and lower semi-

continuous function ϕo : Rd → (−∞,∞] such that supp(γ) ⊂ ∂ϕo. That said, as mentioned

in Remark 3.5, we may replace c-concavity with measurability, meaning that we could have

stated (iii) as: there exists a proper measurable function ϕo : Rd → (−∞,∞] such that

supp(γ) ⊂ ∂ϕo. The current (iii) is valid as convexity guarantees measurability.

As pointed out in Corollary 3.1, an important consequence of Theorem 5.3 is that the

support of any optimal transport plan is contained in ∂ϕo.

Corollary 5.2. Let c be the quadratic cost and suppose∫
Rd

∥x∥22 dµ(x) <∞ and

∫
Rd

∥y∥22 dν(y) <∞.

There exists a proper, convex, and lower semi-continuous function ϕo : Rd → (−∞,∞] such

that supp(γ) ⊂ ∂ϕo holds for any optimal transport plan γ ∈ Π(µ, ν).

Now, we are ready to prove the most important result in optimal transport theory,

Brenier’s theorem, which states that both the Monge and the Kantorovich problems have

the same optimal transport cost under the quadratic cost, with the optimal transport plan
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being induced by the optimal transport map that is given as the gradient of a convex function.

One can already notice that this convex function has to be ϕo that appears in (iii) of Theorem

5.3. It turns out that such a convex function ϕo must be differentiable almost everywhere,

which makes its ∂ϕo almost the same as the graph of its gradient. Lemma 5.3 formally states

this with the help of the following proposition on the differentiability of convex functions

known as Rademacher’s theorem.

Proposition 5.5. Let ϕ : Rd → (−∞,∞] be a proper convex function. Then, ϕ is md-almost

everywhere differentiable on int(dom(ϕ)), i.e., we can find a Borel set Dϕ ⊂ int(dom(ϕ))

such that ϕ is differentiable on Dϕ and md(int(dom(ϕ))\Dϕ) = 0; also, ∂ϕ(x) = {∇ϕ(x)}
for x ∈ Dϕ.

Lemma 5.3. Suppose γ ∈ Π(µ, ν) satisfies supp(γ) ⊂ ∂ϕ for some proper convex function

ϕ : Rd → (−∞,∞]. If µ is absolutely continuous with respect to the Lebesgue measure md,

then ϕ is µ-almost everywhere differentiable and γ = (Id,∇ϕ)#µ.

Proof. As supp(γ) ⊂ ∂ϕ ⊂ dom(ϕ)× Rd,

µ(dom(ϕ)) = γ(dom(ϕ)× Rd) = 1.

Also, the boundary of dom(ϕ) is md-negligible and thus is µ-negligible, which means that

µ(int(dom(ϕ))) = 1. Let Dϕ be the set of points where ϕ is differentiable. Then, Proposition

5.5 shows that md(int(dom(ϕ))\Dϕ) = 0; as µ is absolutely continuous with respect to md,

we have µ(int(dom(ϕ))\Dϕ) = 0, which means µ(Dϕ) = 1. This proves that ϕ is µ-almost

everywhere differentiable. Now, recall that supp(γ) ⊂ ∂ϕ implies γ is concentrated on ∂ϕ.

Notice that

∂ϕ = (∂ϕ ∩ (Dϕ × Rd))︸ ︷︷ ︸
A

∪ (∂ϕ ∩ ((Rd\Dϕ)× Rd))︸ ︷︷ ︸
∂ϕ\A

.

As γ(∂ϕ\A) ≤ γ((Rd\Dϕ) × Rd) = µ(Rd\Dϕ) = 0, we can see that γ is concentrated on

A. Meanwhile, as ∂ϕ(x) = {∇ϕ(x)} for any x ∈ Dϕ, we have A = {(x,∇ϕ(x)) : x ∈ Dϕ}.
By letting ∇ϕ = 0 on Rd\Dϕ, we have a well-defined measurable map ∇ϕ : Rd → Rd whose

graph satisfies

graph(∇ϕ) = A ∪ {(x, 0) : x ∈ Rd\Dϕ} = A ∪ ((Rd\Dϕ)× {0}).

Since

γ((Rd\Dϕ)× {0}) ≤ γ((Rd\Dϕ)× Rd) = µ(Rd\Dϕ) = 0,

we conclude that γ is concentrated on graph(∇ϕ) and thus γ = (Id,∇ϕ)#µ by (ii) of Propo-

sition 1.3.
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Theorem 5.4 (Brenier). Let c be the quadratic cost and suppose∫
Rd

∥x∥22 dµ(x) <∞ and

∫
Rd

∥y∥22 dν(y) <∞.

If µ is absolutely continuous with respect to the Lebesgue measure md, there exists a unique

optimal transport plan γ, which satisfies γ = (Id,∇ϕo)#µ for some proper convex lower semi-

continuous function ϕ : Rd → (−∞,∞] that is µ-almost everywhere differentiable. Moreover,

∇ϕo is a µ-almost everywhere unique optimal transport map.

Proof. As c is continuous, optimal transport plans exist by Theorem 2.3. By Corollary 5.2,

we can find a proper convex lower semi-continuous function ϕo : Rd → (−∞,∞] such that the

support of any optimal transport plan is contained in ∂ϕo. By Lemma 5.3, we conclude that

ϕo is µ-almost everywhere differentiable and (Id,∇ϕo)#µ is the unique optimal transport

plan. By Proposition 1.8, ∇ϕo is a µ-almost everywhere unique optimal transport map.

An immediate consequence of Brenier’s theorem is that when both µ, ν are absolutely

continuous with respect to the Lebesgue measure, the optimal transport map from µ to ν

and the optimal transport map from ν to µ are inverses of each other almost everywhere.

Corollary 5.3. Let c be the quadratic cost and suppose∫
Rd

∥x∥22 dµ(x) <∞ and

∫
Rd

∥y∥22 dν(y) <∞.

Suppose both µ and ν are absolutely continuous with respect to the Lebesgue measure md.

Let T νµ and T µν be optimal transport maps from µ to ν and from ν to µ, respectively. Then,

T µν ◦ T νµ = Id holds µ-almost everywhere and T νµ ◦ T µν = Id holds ν-almost everywhere.

Proof. By Theorem 5.4, (Id, T νµ )#µ ∈ Π(µ, ν) is the unique optimal transport plan incurring

the optimal cost Kc(µ, ν). Similarly, (Id, T µν )#ν ∈ Π(ν, µ) is the unique optimal transport

plan incurring the optimal cost Kc(ν, µ). Due to symmetry, Kc(µ, ν) = Kc(ν, µ), which

implies that (T µν , Id)#ν ∈ Π(µ, ν) must be an optimal transport plan. Then, uniqueness

implies γ := (Id, T νµ )#µ = (Id, T µν )#ν. Therefore, for any F ∈ L1(γ),∫
Rd

F (x, T νµ (x)) dµ(x) =

∫
Rd×Rd

F (x, y) dγ(x, y) =

∫
Rd

F (T µν (y), y) dν(y).

Let F (x, y) = ∥x− T µν (y)∥2, then∫
Rd

∥x− T µν ◦ T νµ (x)∥2 dµ(x) = 0,

hence T µν ◦ T νµ = Id holds µ-almost everywhere. Similarly, T νµ ◦ T µν = Id holds ν-almost

everywhere.
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A useful way to apply Brenier’s theorem to find the optimal transport map is as follows:

if we find any transport map that happens to be the gradient of a convex function, then it

must be the optimal transport map. Corollary 5.4 states this formally.

Corollary 5.4. Let c be the quadratic cost and suppose∫
Rd

∥x∥22 dµ(x) <∞ and

∫
Rd

∥y∥22 dν(y) <∞.

If µ is absolutely continuous with respect to the Lebesgue measure md, any transport map

T ∈ T (µ, ν) such that T = ∇ϕ holds µ-almost everywhere for some proper convex lower

semi-continuous function ϕ : Rd → (−∞,∞] satisfying ϕ ∈ L1(µ) is an optimal transport

map.

Proof. Let γ = (Id, T )#µ which is a transport map by Proposition 1.1. We first prove

ϕ∗ ∈ L1(ν). Note that ϕ∗(∇ϕ(x)) = ⟨x,∇ϕ(x)⟩ − ϕ(x) for x ∈ Dϕ.∫
Rd

|⟨x,∇ϕ(x)⟩| dµ(x) ≤
∫
Rd

∥x∥22
2

dµ(x) +

∫
Rd

∥∇ϕ(x)∥22
2

dµ(x)

=

∫
Rd

∥x∥22
2

dµ(x) +

∫
Rd

∥x∥22
2

dν(x) <∞.

Therefore, x 7→ ϕ∗(∇ϕ(x)) is in L1(µ), and thus∫
Rd

|ϕ∗(∇ϕ(x))| dµ(x) =
∫
Rd

|ϕ∗(x)| dν(x) <∞.

Next, we prove that supp(γ) ⊂ ∂ϕ;this will imply that γ is optimal by (iii) of Theorem

5.3, and thus T is an optimal transport map. Note that it suffices to prove γ(∂ϕ) = 1;

if this is true, closedness of ∂ϕ implies supp(γ) ⊂ ∂ϕ. As in the proof of Lemma 5.3, let

A = {(x,∇ϕ(x)) : x ∈ Dϕ}. Then, γ(∂ϕ\A) = 0, and hence γ(∂ϕ) = γ(A). Also, recall that

γ(graph(∇ϕ)\A) = γ((Rd\Dϕ)× {0}) = 0,

hence γ(graph(∇ϕ)) = γ(A). Meanwhile, for ∆ := {x ∈ Rd : T (x) = ∇ϕ(x)}, we have

µ(∆) = 1, which implies

γ(graph(T ) ∩ graph(∇ϕ)) = γ{(x, T (x)) : x ∈ ∆} ≥ µ(∆) = 1.

Lastly, γ(graph(T )) = 1 by construction, which implies γ(graph(∇ϕ)) = 1. In summary,

γ(∂ϕ) = γ(A) = γ(graph(∇ϕ)) = 1.
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Example 5.2 (Gaussian Distributions). Let µ and ν be the Gaussian distributions

N(θ1,Σ1) and N(θ2,Σ2), respectively. We first consider linear transport maps, that is,

T (x) = Ax + b for A ∈ Rd×d and b ∈ Rd such that Aθ1 + b = θ2 and AΣ1A
⊤ = Σ2. Now,

let us find a linear transport map that incurs the smallest transport cost, which can be

formulated as

min
A∈Rd×d

AΣ1A⊤=Σ2

∫
Rd

∥A(x− θ1) + θ2 − x∥22 dµ(x)︸ ︷︷ ︸
=:Q(A)

.

Then, one can verify that

Q(A) = tr(AΣ1A
⊤) + ∥θ2∥22 + tr(Σ1) + ∥θ1∥22 − 2(tr(AΣ1) + ⟨θ1, θ2⟩).

Therefore, the problem is equivalent to

max
A∈Rd×d

AΣ1A⊤=Σ2

tr(AΣ1).

Assuming Σ1 is invertible, the above problem is equivalent to

max
B∈Rd×d

BB⊤=Σ
1/2
1 Σ2Σ

1/2
1

tr(B),

where we change the variable by letting B = Σ
1/2
1 AΣ

1/2
1 . Using the spectral decomposition,

one can verify that the maximum is attained by B = (Σ
1/2
1 Σ2Σ

1/2
1 )1/2. Therefore,

x 7→ Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 (x− θ1) + θ2

is a linear transport map that incurs the smallest transport cost, where the transport cost is

Q(Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 ) = ∥θ1 − θ2∥22 + tr

(
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
.

Importantly, this linear map is the gradient of the following convex quadratic function:

ϕ(x) :=
1

2
⟨x− θ1,Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 (x− θ1)⟩+ ⟨θ2, x⟩,

where the convexity of ϕ follows as Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 is positive semidefinite. By

Corollary 5.4, we conclude that this linear transport map is in fact the optimal transport

map. By symmetry, if Σ2 is invertible,

x 7→ Σ
−1/2
2 (Σ

1/2
2 Σ1Σ

1/2
2 )1/2Σ

−1/2
2 (x− θ2) + θ1

is the optimal transport map from ν to µ. Its inverse map

x 7→ Σ
1/2
2 (Σ

1/2
2 Σ1Σ

1/2
2 )−1/2Σ

1/2
2 (x− θ1) + θ2

is the optimal transport map from µ to ν, where one can verify

Σ
1/2
2 (Σ

1/2
2 Σ1Σ

1/2
2 )−1/2Σ

1/2
2 = Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 .
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Now, we revisit Corollaries 3.1 and 3.2.

Corollary 5.5. Let c be the quadratic cost and suppose

M :=

∫
Rd

∥x∥22
2

dµ(x) +

∫
Rd

∥y∥22
2

dν(y) <∞.

(i) There exists a proper, convex, and lower semi-continuous function ϕo : Rd → (−∞,∞]

such that (ϕo, ϕ
∗
o) ∈ L1(µ)× L1(ν) and

inf
γ∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥22
2

dγ(x, y) =M −
∫
Rd

ϕo dµ−
∫
Rd

ϕ∗
o dν.

Also, supp(γ) ⊂ ∂ϕo holds for any optimal transport plan γ ∈ Π(µ, ν).

(ii) The following semi-duality holds:

sup
γ∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩ dγ(x, y) = inf
ϕ∈S

(∫
X
ϕ dµ+

∫
Y
ϕ∗ dν

)
, (5.3)

where S is the collection of all proper convex and lower semi-continuous functions

ϕ : Rd → (−∞,∞] such that (ϕ, ϕ∗) ∈ L1(µ)× L1(ν).

(iii) The following duality holds:

sup
γ∈Π(µ,ν)

∫
Rd×Rd

⟨x, y⟩ dγ(x, y) = inf
(ϕ,ψ)∈D

(∫
X
ϕ dµ+

∫
Y
ψ dν

)
, (5.4)

D is the collection of all pairs (ϕ, ψ) ∈ L1(µ) × L1(ν) such that ϕ(x) + ψ(y) ≥ ⟨x, y⟩
for all (x, y) ∈ Rd × Rd.

In particular, ϕo of (i) satisfies ϕo ∈ S and (ϕo, ϕ
∗
o) ∈ D which are the minimizers of the

right-hand sides of (5.3) and (5.4), respectively.

Now, it should be clear that if µ is absolutely continuous with respect to the Lebesgue

measure, then ϕo in Corollary 5.5 is the same as ϕo in Theorem 5.4.
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6 Wasserstein Distance

One of the most important results of optimal transport theory is that optimal transport cost

between two probability measures defines a distance. More concretely, given a separable

metric space (X , ρ), we consider the Kantorovich problem between µ, ν ∈ P(X ), where the

cost function is c(x, y) = ρ(x, y)p for some fixed exponent p ∈ [1,∞). The resulting minimum

of the Kantorovich problem gives rise to the Wasserstein distance. This section rigorously

derives metric and topological properties of the Wasserstein distance.

Settings Unless otherwise stated, (X , ρ) is a separable metric space and p ∈ [1,∞) is a

fixed exponent.

6.1 Basic properties

Definition 6.1. The Wasserstein distance of order p between µ, ν ∈ P(X ) is defined by

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
X×X

ρ(x, y)p dγ(x, y)

)1/p

. (6.1)

Remark 6.1 (Geometric Interpretation). As Π(δx, δy) = {δ(x,y)}, one can verify that

Wp(δx, δy) = ρ(x, y) for any x, y ∈ X . Roughly speaking, this implies that Wp measures a

distance between two elements of P(X ) by taking into account the distance between their

supports under the ground metric ρ. In other words, Wp utilizes a metric structure of the

underlying space X to define a distance on P(X ). Though this seems very natural, other

distances or divergences on P(X ) lack such a geometry perspective.

In practice, we mostly focus on the Euclidean space case where X = Rd and ρ is the

Euclidean distance.

Example 6.1. Recall that h(x) = |x|p is a convex function on R for any p ∈ [1,∞). Hence,

Theorem 5.1 shows that

Wp(µ, ν) =

(∫ 1

0

|F−1
µ (u)− F−1

ν (u)|p du
)1/p

∀µ, ν ∈ P(R), (6.2)

where Fµ and Fν denote the distribution functions of µ and ν, respectively. Using Fubini’s

theorem, one can verify that

W1(µ, ν) =

∫
R
|Fµ(x)− Fν(x)| dx.
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In Example 6.1, note that Wp can be infinite as mentioned in the proof of Theorem

5.1. One way to ensure finiteness of Wp is to utilize a moment condition, for instance, (6.2)

becomes finite provided∫ 1

0

|F−1
µ (u)|p du =

∫
R
|x|p dµ(x) <∞ and

∫ 1

0

|F−1
ν (u)|p du =

∫
R
|x|p dν(x) <∞.

In other words, if both µ and ν have finite p-th moments, Wp(µ, ν) <∞ is guaranteed. We

can extend such a moment condition to the general case as follows.

Definition 6.2. Define Pp(X ) as a subset of P(X ) having finite p-th moments, that is,

Pp(X ) =

{
µ ∈ P(X ) :

∫
X
ρ(x, x0)

p dµ(x) <∞
}
.

for some x0 ∈ X .

Remark 6.2. In Definition 6.2, one can verify that Pp(X ) is independent of the choice of

x0 using the triangle inequality. Also, note that∫
X
ρ(x, x0)

p = W p
p (µ, δx0).

Moreover, one can verify that Pp(X ) ⊃ Pq(X ) provided p ≤ q. In other words, having

some particular moment implies existence of all the lower moments.

We have an ordering of Wasserstein distances as follows.

Proposition 6.1. Let p, q ∈ [1,∞) be two exponents such that p ≤ q. Then,

(i) Wp ≤ Wq,

(ii) Wq ≤ W
p/q
p diam(X )1−p/q.

Remark 6.3. Recall from Theorem 4.2 that if µ, ν ∈ P1(X ) are tight,

W1(µ, ν) = sup
φ : X→R
∥φ∥Lip≤1

(∫
X
φ dµ−

∫
X
φ dν

)
, (6.3)

where we define for any φ : X → R,

∥φ∥Lip := sup
x ̸=y

|φ(x)− φ(y)|
ρ(x, y)

.

In short, W1 is the supremum of
∫
X φ dµ−

∫
X φ dν over all 1-Lipschitz functions φ on X .
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6.2 Metric properties

We derive metric properties of the Wasserstein distance. First, note that Wp is symmetric

by definition. Next, we show that µ = ν if and only if Wp(µ, ν) = 0. The “if” part requires

tightness of µ, ν.

Proposition 6.2. Wp(µ, µ) = 0 for any µ ∈ P(X ). If µ, ν ∈ P(X ) are tight, Wp(µ, ν) = 0

implies µ = ν.

Proof. Wp(µ, µ) = 0 holds because (Id, Id)#µ ∈ Π(µ, µ) by Proposition 1.4, which gives

W p
p (µ, µ) ≤

∫
X×X

ρ(x, y)p d(Id, Id)#µ(x, y) =

∫
X
ρ(x, x)p dµ(x) = 0.

If µ, ν ∈ P(X ) are tight, we can find an optimal transport plan γ ∈ Π(µ, ν) with respect to

the cost ρp by Theorem 2.3, that is, γ satisfies∫
X×Y

ρp dγ = W p
p (µ, ν) = 0.

Hence, γ is concentrated on the graph of Id : X → X . By Proposition 1.3, we conclude

γ = (Id, Id)#µ, and hence ν = Id#µ = µ.

Remark 6.4. For any µ ∈ P(X ), one can verify that (Id, Id)#µ is the unique optimal

transport plan from µ to itself for a cost function ρp. To see this, suppose γ ∈ Π(µ, µ)

is an optimal transport plan. As the optimal cost is W p
p (µ, µ) = 0, we can see that γ is

concentrated on {(x, y) ∈ X ×X : x = y}, the graph of a transport map Id: X → X from µ

to itself. By Proposition 1.3, we conclude γ = (Id, Id)#µ.

Next, we prove the triangle inequality. Given three elements µ1, µ2, µ3 ∈ P(X ), the

main idea is to invoke the gluing technique (Lemma 1.3) to construct a probability measure

Γ ∈ P(X × X × X ) such that

(i) the three marginal measures of Γ are µ1, µ2, µ3 in turn,

(ii) (P12)#Γ is an optimal transport plan from µ1 to µ2,

(iii) (P23)#Γ is an optimal transport plan from µ2 to µ3,

where Pij(x1, x2, x3) = (xi, xj) for all i, j ∈ {1, 2, 3} such that i ̸= j and all x1, x2, x3 ∈ X .

Then, the proof follows thanks to the Minkowski inequality.

Proposition 6.3. If (X , ρ) is a complete separable metric space,

Wp(µ1, µ3) ≤ Wp(µ1, µ2) +Wp(µ2, µ3) ∀µ1, µ2, µ3 ∈ B(X ).
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Proof. Due to tightness, we can find γ12 ∈ Π(µ1, µ2) and γ23 ∈ Π(µ2, µ3) such that

W p
p (µ1, µ2) =

∫
X×X

ρp dγ12 and W p
p (µ2, µ3) =

∫
X×X

ρp dγ23.

Using Lemma 1.3, we can find Γ ∈ P(X×X×X ) such that γ12 = (P12)#Γ and γ23 = (P23)#Γ;

note that this implies γ13 := (P13)#Γ ∈ Π(µ1, µ3). Then,

Wp(µ1, µ3) ≤
(∫

X×X
ρ(x1, x3)

p dγ13

)1/p

=

(∫
X×X×X

ρ(x1, x3)
p dγ

)1/p

≤
(∫

X×X×X
(ρ(x1, x2) + ρ(x2, x3))

p dγ

)1/p

≤
(∫

X×X×X
ρ(x1, x2)

p dγ

)1/p

+

(∫
X×X×X

ρ(x2, x3)
p dγ

)1/p

=

(∫
X×X

ρ(x1, x2)
p dγ12

)1/p

+

(∫
X×X

ρ(x2, x3)
p dγ23

)1/p

= Wp(µ1, µ2) +Wp(µ2, µ3).

Therefore, if (X , ρ) is a complete separable metric space, Wp satisfies the triangle in-

equality; also, since all elements of P(X ) are tight (Remark 2.4), Proposition 6.2 holds.

Accordingly, by restricting Wp to Pp(X ), we conclude that Wp is indeed a metric.

Corollary 6.1. If (X , ρ) is a complete separable metric space, Wp is a metric on Pp(X ).

We call the metric space (Pp,Wp) the Wasserstein space of order p.

Example 6.2. Suppose X = Rd is equipped with the standard Euclidean distance. As in

Example 5.2, let µ and ν be the Gaussian distributions N(θ1,Σ1) and N(θ2,Σ2), respectively,

where we assume Σ1 is invertible. We have seen in Example 5.2 that

T (x) = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 (x− θ1) + θ2 ∀x ∈ Rd

is the unique optimal transport map under the quadratic cost. Therefore,

W 2
2 (µ, ν) =

∫
Rd

|T (x)− x|2 dµ(x) = ∥θ1 − θ2∥22 + tr
(
Σ1 + Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

)
︸ ︷︷ ︸

=β(Σ1,Σ2)2

,

where β is often called the Bures metric. One can show that

β(Σ1,Σ2)
2 ≤ ∥Σ1/2

1 − Σ
1/2
2 ∥2F ,
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where ∥ · ∥F denote the Frobenius norm. To see this, it suffices to observe that

tr(Σ
1/2
1 Σ

1/2
2 ) ≤ tr((Σ

1/2
1 Σ2Σ

1/2
1 )1/2).

In fact, letting S(x) = Σ
1/2
2 Σ

−1/2
1 (x− θ1) + θ2, we can verify that S is a transport map from

µ to ν and its transport cost satisfies∫
Rd

|S(x)− x|2 dµ(x) = ∥θ1 − θ2∥22 + ∥Σ1/2
1 − Σ

1/2
2 ∥2F .

6.3 Topological properties of the Wasserstein space

Theorem 6.1. If (X , ρ) is a complete separable metric space, the following are equivalent

for a sequence (µn)n∈N and µ in Pp(X ):

(i) limn→∞Wp(µn, µ) = 0.

(ii) (µn)n∈N converges weakly to µ and

lim
n→∞

∫
ρ(x, x0)

p dµn =

∫
ρ(x, x0)

p dµ ∀x0 ∈ X . (6.4)

(iii) (µn)n∈N converges weakly to µ and

lim
R→∞

lim sup
n→∞

∫
ρ(x,x0)≥R

ρ(x, x0)
p dµn = 0 ∀x0 ∈ X . (6.5)

Proof. Suppose (i) holds. Then, limn→∞W1(µn, µ) = 0 as well by Proposition 6.1. As

discussed in Remark 6.3, for any 1-Lipschitz function φ on X ,∣∣∣∣∫
X
φ dµn −

∫
X
φ dµ

∣∣∣∣ ≤ W1(µn, µ) ∀n ∈ N,

which implies limn→∞
∫
X φ dµn =

∫
X φ dµ. One can verify that this must hold for any

bounded Lipschitz φ, which implies that (µn)n∈N converges weakly to µ by Theorem 2.1.

Also, for any x0 ∈ X , note that

lim
n→∞

∫
X
ρ(x, x0)

p dµn(x) = lim
n→∞

Wp(µn, δx0)
p = Wp(µ, δx0)

p =

∫
X
ρ(x, x0)

p dµ.

Suppose (ii) holds. For any n ∈ N and R > 0, define

Mn =

∫
X
ρ(x, x0)

p dµn(x) and Mn,R =

∫
X
ρ(x, x0)

p ∧Rp dµn(x).

For any R > 0, weak convergence of (µn)n∈N to µ implies

lim
n→∞

Mn,R =

∫
X
ρ(x, x0)

p ∧Rp dµ(x) =:MR.
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Also, letting CR = {x ∈ X : ρ(x, x0) ≥ R},∫
ρ(x,x0)≥R

ρ(x, x0)
p dµn(x) =Mn −Mn,R +Rpµn(CR).

Therefore, using (6.4),

lim sup
n→∞

∫
ρ(x,x0)≥R

ρ(x, x0)
p dµn(x) =

∫
X
ρ(x, x0)

p dµ(x)−MR +Rp lim sup
n→∞

µn(CR)

≤
∫
X
ρ(x, x0)

p dµ(x)−MR +Rpµ(CR)

=

∫
ρ(x,x0)≥R

ρ(x, x0)
p dµ(x),

where the inequality is due to Theorem 2.1 as CR is a closed set. Note that the dominated

convergence theorem implies

lim
R→∞

∫
ρ(x,x0)≥R

ρ(x, x0)
p dµ(x) = 0,

hence (6.5) holds. Suppose (iii) holds. For each n ∈ N, let γn be an optimal transport plan

between µn and µ. Then, (γn)n∈N converges weakly to γ = (Id, Id)#µ, the unique optimal

transport plan from µ to itself for a cost function ρp by Theorem 4.1. Now, fix x0 ∈ X and

divide X × X into three regions:

S1 = {(x, y) ∈ X × X : ρ(x, y) < R},
S2 = {(x, y) ∈ X × X : ρ(x, y) ≥ R and ρ(x, x0) ≥ ρ(y, x0)},
S3 = {(x, y) ∈ X × X : ρ(x, y) ≥ R and ρ(x, x0) < ρ(y, x0)}.

Note that ρ = ρ ∧ R on S1. Also, ρ(x, y) ≤ 2ρ(x, x0) and ρ(x, y) ≤ 2ρ(y, x0) on S2 and S3

respectively. Hence,

ρ(x, y) ≤ 2ρ(x, x0)I{ρ(x,x0)≥R/2} ∀(x, y) ∈ S2,

ρ(x, y) ≤ 2ρ(y, x0)I{ρ(y,x0)≥R/2} ∀(x, y) ∈ S3.

Therefore, for each n ∈ N.∫
S2

ρp dγn ≤ 2p
∫
X×X

ρ(x, x0)
pI{ρ(x,x0)≥R/2} dγn(x, y) = 2p

∫
ρ(x,x0)≥R/2

ρ(x, x0)
p dµn(x),∫

S3

ρp dγn ≤ 2p
∫
X×X

ρ(y, x0)
pI{ρ(y,x0)≥R/2} dγn(x, y) = 2p

∫
ρ(y,x0)≥R/2

ρ(y, x0)
p dµ(y),
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hence letting CR/2 = {x ∈ X : ρ(x, x0) ≥ R/2},

Wp(µn, µ)
p =

∫
X×X

ρp dγn

=

∫
S1

ρp dγn +

∫
S2

ρp dγn +

∫
S3

ρp dγn

≤
∫
X×X

ρp ∧Rp dγn + 2p
∫
CR/2

ρ(x, x0)
p dµn(x) + 2p

∫
CR/2

ρ(y, x0)
p dµ(y).

As (γn)n∈N converges weakly to γ = (Id, Id)#µ which is concentrated on {(x, y) ∈ X × X :

ρ(x, y) = 0},
lim
n→∞

∫
X×X

ρp ∧Rp dγn =

∫
X×X

ρp ∧Rp dγ = 0.

Therefore,

lim sup
n→∞

Wp(µn, µ)
p ≤ 2p lim sup

n→∞

∫
CR/2

ρ(x, x0)
p dµn(x) + 2p

∫
CR/2

ρ(y, x0)
p dµ(y),

where the right-hand side vanishes as R → ∞ due to (6.5) and the dominated convergence

theorem.
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7 Useful Techniques and Their Applications

Settings Throughout this section, (X ,A, µ) and (Y ,B, ν) denote probability spaces unless

otherwise stated.

7.1 Transport plans under mappings

We introduce a useful technique to characterize transport plans under measurable mappings;

see Lemma 3.12 of [AG13].

Proposition 7.1. Let (Z, C) and (W ,D) be measurable spaces. Suppose f : X → Z and

g : Y → W are measurable. Define (f, g) : X × Y → Z × W as (f, g)(x, y) = (f(x), g(y)).

Assume X and Y are Polish spaces, A = B(X ), and B = B(Y). For any Γ ∈ Π(f#µ, g#ν),

there exists γ ∈ Π(µ, ν) such that (f, g)#γ = Γ.

Proof. Note that a probability measure γ(1) = (Id, f)#µ on X ×Z satisfies γ(1) ∈ Π(µ, f#µ).

By Theorem 1.1, we can find a collection {γ(1)z : z ∈ Z} of probability measures on X such

that

γ(1)(S1) =

∫
Z

∫
X
I{(x,z)∈S1} dγ

(1)
z (x)df#µ(z) ∀S1 ∈ A⊗ C.

Similarly, for γ(2) := (Id, g)#ν ∈ Π(ν, g#ν) on Y×W , we can find a collection {γ(2)w : w ∈ W}
of probability measures on Y such that

γ(2)(S2) =

∫
W

∫
Y
I{(y,w)∈S2} dγ

(2)
w (y)dg#ν(w) ∀S2 ∈ B ⊗D.

Now, we define γ as follows:

γ(S) =

∫
Z×W

γ(1)z ⊗ γ(2)w (S) dΓ(z, w) ∀S ∈ A⊗ B,

or more generally, for any measurable h : X × Y → [0,∞],∫
X×Y

h(x, y) dγ(x, y) =

∫
Z×W

∫
X×Y

h(x, y) dγ(1)z (x)dγ(2)w (y) dΓ(z, w)

To see γ ∈ Π(µ, ν), note that for any A ∈ A,

γ(A× Y) =

∫
Z×W

γ(1)z (A) dΓ(z, w) =

∫
Z
γ(1)z (A) df#µ(z) = γ(1)(A×Z) = µ(A).

Similarly, one can prove that γ(X × B) = ν(B) for any B ∈ B. Next, we prove that

(f, g)#γ = Γ. Note that a collection (f#γ
(1)
z )z∈Z amounts to conditional probability measures

of (f, Id)#γ
(1) given the marginal f#µ on the second coordinate. As (f, Id)#γ

(1) = (f, f)#µ,
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the collection (f#γ
(1)
z )z∈Z must coincide f#µ-almost everywhere with (δz)z∈Z due to unique-

ness of disintegration. Therefore, for any measurable H : Z ×W → [0,∞],∫
Z×W

H d(f, g)#γ =

∫
X×Y

H(f(x), g(y)) dγ(x, y)

=

∫
Z×W

∫
X×Y

H(f(x), g(y)) dγ(1)z (x)dγ(2)w (y) dΓ(z, w)

=

∫
Z×W

∫
Z×W

H(z′, w′) df#γ
(1)
z (z′)dg#γ

(2)
w (w′) dΓ(z, w)

=

∫
Z×W

∫
Z×W

H(z′, w′) dδz(z
′)dδw(w

′) dΓ(z, w)

=

∫
Z×W

H(z, w) dΓ(z, w).

Remark 7.1. Suppose we know marginal distributions of (X, Y ). Then, given two maps

f and g, we know the joint distribution of (f(X), g(Y )). The preceding result tells that

we can find a joint distribution of (X, Y ) in accordance with this set of information. In

particular, one possibility is to assume X and Y are independent given f(X) and g(Y ), so

that X, Y |f(X), g(Y ) is a tuple of two independent distributions X|f(X) and Y |g(Y ).

Corollary 7.1. Let (Z, C) and (W ,D) be measurable spaces. Suppose f : X → Z and

g : Y → W are measurable. Define (f, g) : X × Y → Z ×W as (f, g)(x, y) = (f(x), g(y)).

(i) For any transport plan γ ∈ Π(µ, ν), a probability measure (f, g)#γ on Z × W is a

transport plan between f#µ and g#ν, and hence

{(f, g)#γ : γ ∈ Π(µ, ν)} ⊂ Π(f#µ, g#ν). (7.1)

(ii) Given any cost function c on Z ×W,

inf
Γ∈Π(f#µ,g#ν)

∫
Z×W

c(z, w) dΓ(z, w) ≤ inf
γ∈Π(µ,ν)

∫
X×Y

c(f(x), g(z)) dγ(x, y). (7.2)

If X and Y are Polish spaces, A = B(X ), and B = B(Y), both (7.1) and (7.2) are equalities:

{(f, g)#γ : γ ∈ Π(µ, ν)} = Π(f#µ, g#ν)

and

inf
Γ∈Π(f#µ,g#ν)

∫
Z×W

c(z, w) dΓ(z, w) = inf
γ∈Π(µ,ν)

∫
X×Y

c(f(x), g(z)) dγ(x, y).
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Remark 7.2. We may interpret this results as follows: if we pushforward µ and ν by

measurable maps, there are more transport plans between the image measures. Accordingly,

the optimal transport cost from f#µ to g#ν given a cost function c is smaller than the

optimal transport cost from µ to ν given a cost function c◦ (f, g), i.e., (x, y) 7→ c(f(x), g(y)).

Proposition 7.2. Let R ∈ SO(3) be a rotation matrix whose rotation angle is θ ∈ (0, π).

Then, for any µ ∈ P(R3),

W p
p (µ,R#µ) ≤ (2 sin(θ/2))p ·

∫
R3

∥x∥p2 dµ(x).

Proof. Let P : R3 → R3 be a projection to the hyperplane orthogonal to the rotation axis.

Then, for any x ∈ R3,

∥x−Rx∥2 = 2 sin(θ/2)∥Px∥2 ≤ 2 sin(θ/2) · ∥x∥2.

Due to Corollary 7.1 and Proposition 1.4,

W p
p (µ,R#µ) = inf

γ∈Π(µ,µ)

∫
R3×R3

∥x−Ry∥p2 dγ(x, y)

≤
∫
R3

∥x−Rx∥p2 dµ(x) (∵ (Id, Id)#µ ∈ Π(µ, µ))

≤ (2 sin(θ/2))p ·
∫
R3

∥x∥p2 dµ(x).

Proposition 7.3. Let (X , ρX ) and (Z, ρZ) be separable metric spaces. Suppose a map

f : X → Z is L-Lipschitz, i.e., ρZ(f(x), f(y)) ≤ L · ρX (x, y) for all x, y ∈ X . Then,

for any µ, ν ∈ P(X ),

Wp(f#µ, f#ν) ≤ L ·Wp(µ, ν),

where Wp’s on the left-hand side and right-hand side denote the Wasserstein distances on

P(Z) and P(X ), respectively.

Proof. Due to Corollary 7.1 and Lipschitzness of f ,

W p
p (f#µ, f#ν) = inf

Γ∈Π(f#µ,f#ν)

∫
Z×Z

ρZ(z1, z2)
p dΓ(z1, z2)

= inf
γ∈Π(µ,ν)

∫
X×X

ρZ(f(x1), f(x2))
p dγ(x1, x2)

≤ Lp · inf
γ∈Π(µ,ν)

∫
X×X

ρX (x1, x2)
p dγ(x1, x2)

= Lp ·W p
p (µ, ν).
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Proposition 7.4. Fix k, d ∈ N and U ∈ Rk×d. Define L : Rd → Rk as L(x) = Ux. Then,

for any µ, ν ∈ P(Rd),

Wp(L#µ, L#ν) ≤ ∥U∥2 ·Wp(µ, ν),

where ∥U∥2 denotes the spectral norm of U .

Proof. Since

∥L(x)− L(y)∥2 = ∥U⊤(x− y)∥2 ≤ ∥U∥2 · ∥x− y∥2 ∀x, y ∈ Rd,

Proposition 7.3 implies Wp((LU)#µ, (LU)#ν) ≤ ∥U∥2 ·Wp(µ, ν).

7.2 Transport all but the common part

Lemma 7.1. Suppose X = Y and A = B. Consider the Jordan decomposition of a signed

measure µ− ν = (µ− ν)+− (µ− ν)−. Let µ∧ ν := µ− (µ− ν)+ and δ = (µ− ν)+(X ). Then,

γ := (Id, Id)#(µ ∧ ν) + 1

δ
(µ− ν)+ ⊗ (µ− ν)− ∈ Π(µ, ν).

Furthermore, suppose ∆ := {(x, x) : x ∈ X} ∈ A⊗A. Then, the two measures (Id, Id)#(µ∧ν)
and (µ− ν)+ ⊗ (µ− ν)− are mutually singular; more precisely, they are concentrated on ∆

and (X × X )\∆, respectively. In particular,

γ((X × X )\∆) = δ.

Proof. Verify γ(A×X ) = µ(A) and γ(X ×B) = ν(B). Also,

(Id, Id)#(µ ∧ ν)(X × X ) = (Id, Id)#(µ ∧ ν)(∆) = (µ ∧ ν)(X ) = 1− δ.

As (µ−ν)+ ⊥ (µ−ν)−, there are disjoint sets E,F ∈ A such that E∪F = X , (µ−ν)+(F ) = 0,

and (µ− ν)−(E) = 0. Hence,

(µ−ν)+⊗(µ−ν)−(∆) = (µ−ν)+⊗(µ−ν)−(∆∩(E×X ))+(µ−ν)+⊗(µ−ν)−(∆∩(F×X )).

By definition,

(µ− ν)+ ⊗ (µ− ν)−(∆ ∩ (E ×X )) ≤ (µ− ν)+ ⊗ (µ− ν)−{(x, x) : x ∈ E}
≤ (µ− ν)+ ⊗ (µ− ν)−(X × E)

= (µ− ν)−(E)

= 0.

Similarly, (µ−ν)+⊗ (µ−ν)−(∆∩ (F ×X )) = 0. Therefore, (µ−ν)+⊗ (µ−ν)−(∆) = 0.
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Having a particular transport plan is useful for deriving upper bounds on the Wasserstein

distance. The following result upper bounds the Wasserstein distanceWp by the total variant

distance; see Proposition 7.10 of [Vil03] for the proof.

Proposition 7.5. Let (X , ρ) be a separable metric space. For µ, ν ∈ P(X ),

W p
p (µ, ν) ≤ 2p−1

∫
X
ρ(x, x0)

p d|µ− ν|(x).
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Spaces and in the Space of Probability Measures. Birkhäuser, 2005.
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