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1 Introduction

1.1 Prelude: From Glivenko-Cantelli to Dvoretzky-Kiefer-Wolfowitz

In probability theory, the Glivenko-Cantelli theorem states that the empirical distribution function
converges uniformly to the underlying cumulative distribution function as the sample size increases.
Let X1, . . . , Xn be i.i.d. from some probability measure P on R whose cumulative distribution
function (CDF) is F . The empirical distribution function is defined as Fn(x) :=

1
n

∑n
i=1 1{Xi ≤ x}

for any x ∈ R. Then, the Glivenko-Cantelli theorem states that supx∈R |Fn(x) − F (x)| → 0 in
probability as n → ∞. For x ∈ R, the convergence |Fn(x) − F (x)| → 0 in probability is a
direct consequence of the law of large numbers (LLN). The Glivenko-Cantelli theorem establishes
convergence in a uniform sense by showing the convergence of the supremum over all x ∈ R.

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality strengthens the Glivenko-Cantelli theorem
by providing the rate of convergence. Concretely, for any ε > 0, we have

P
(
sup
x∈R

|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 .

Equivalently, we often write this as follows: for any δ ∈ (0, 1), we have

sup
x∈R

|Fn(x)− F (x)| ≤
√

log(2/δ)

2n
holds with probability at least 1− δ. (1.1)

This probabilistic bound on the uniform deviation supx∈R |Fn(x)− F (x)| provides the rate of con-
vergence in terms of the sample size n, which is O(1/

√
n). This result is non-asymptotic in the

sense that it holds for any finite sample size n, which does not require the limit n → ∞.
Note that {Fn(x) − F (x) : x ∈ R} is a collection of random variables indexed by x ∈ R; for

each x ∈ R, we have a random variable Fn(x)−F (x) that depends on X1, . . . , Xn. This collection,
which we can view as a stochastic process, is an instance of empirical processes. The Glivenko-
Cantelli theorem concerns the asymptotic behavior of this empirical process in a uniform sense,
often called as the uniform law of large numbers, by taking the supremum over x ∈ R, while the
DKW inequality provides a sharper non-asymptotic result by establishing a probabilistic bound on
the supremum of the empirical process.

1.2 Empirical Processes: Non-Asymptotic Analysis

In this note, we study general empirical processes from a non-asymptotic viewpoint. Consider a
probability space space (X ,A, P ) and a class F of real-valued integrable functions on X , namely,
F ⊂ L1(P ). Let X1, . . . , Xn be independent X -valued random variables whose laws are P , where
we denote the empirical measure associated with X1, . . . , Xn by Pn. For any f ∈ F , consider the
following random variable:

1

n

n∑
i=1

f(Xi)−
∫
X
f dP =: Pnf − Pf,

which is the average of i.i.d. random variables f(X1), . . . , f(Xn) centered by the expectation
Ef(X1). Here, Pnf and Pf are the integrals of f with respect to Pn and P , respectively. We
call the collection (

√
n(Pnf − Pf))f∈F of random variables the empirical process indexed by F .

Now, one can see that {Fn(x)−F (x) : x ∈ R} in the Glivenko-Cantelli theorem is a special case of
the empirical process with X = R and F = {1(−∞,x] : x ∈ R}.
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The classic topics of empirical process theory concern the asymptotic behavior of the empirical
process in a uniform sense. One of the main questions is to characterize conditions for F under
which supf∈F |Pnf − Pf | → 0 in probability as n → ∞. Like the Glivenko-Cantelli theorem, this
extends the convergence of |Pnf − Pf | → 0 for each f ∈ F to the uniform sense by showing the
convergence of the supremum over all f ∈ F . A class F for which supf∈F |Pnf − Pf | → 0 in
probability is called a Glivenko-Cantelli (GC) class; or, F is said to satisfy the uniform law of large
numbers. [vdVW96, Kos08, vdVW23] are standard references that extensively cover the study of
GC classes, another important topic regarding the limit distribution of the empirical process called
the Donsker’s theorem, and their applications to statistical inference.

In this note, like the DKW inequality, we take a non-asymptotic viewpoint to quantify the rate
of convergence of supf∈F |Pnf − Pf | to 0 in terms of the sample size n ∈ N. Accordingly, we will
derive the following type of probabilistic bound that resembles the DKW inequality:

sup
f∈F

|Pnf − Pf | ≤ b(n) holds with high probability, (1.2)

where b is a suitable complexity that converges to 0 as n → ∞. To this end, we start by studying
the convergence of the expectation E supf∈F |Pnf − Pf | to 0. In other words, we first evaluate
how fast supf∈F |Pnf − Pf | converges to 0 on average by deriving a suitable upper bound on
E supf∈F |Pnf − Pf |, which will then lead to the above type of probabilistic bound.

We conclude this section by providing examples of applications where we want to bound the
deviation of the empirical process.

Example 1.1 (Empirical Risk Minimization). In statistical problems involving an i.i.d. sample
X1, . . . , Xn from an unknown distribution P , we often find a parameter of interest following a
decision-theoretic framework as follows. Let Θ be the set of parameters of interest, and for each
θ ∈ Θ, we define its risk as

L(θ) :=

∫
X
ℓ(x, θ) dP (x),

where ℓ is a certain loss function. Then, the goal is to find a minimizer of the risk over Θ,
say, θ∗ ∈ argminθ∈Θ L(θ). As P is unknown in general, θ∗ cannot be computed. Empirical risk
minimization uses data to estimate θ∗ by minimizing the empirical risk defined as

Ln(θ) :=
1

n

n∑
i=1

ℓ(Xi, θ) =

∫
X
ℓ(x, θ) dPn(x).

In the parametric inference context, this is essentially the framework called M-estimation. More
broadly, allowing θ to be a function, many regression and classification methods in machine learning
are formulated under this framework. To evaluate the performance of a minimizer of the empirical
risk Ln, say, θn ∈ argminθ∈Θ Ln(θ), we compare the excess risk of θn compared to the best one
θ∗, that is, L(θn) − L(θ∗). The rate of convergence of L(θn) − L(θ∗) provides a non-asymptotic
performance guarantee of the empirical risk minimizer θn. To this end, we bound the excess risk
as follows:

L(θn)− L(θ∗) = L(θn)− Ln(θn) + Ln(θn)− Ln(θ
∗) + Ln(θ

∗)− L(θ∗)

≤ L(θn)− Ln(θn) + Ln(θ
∗)− L(θ∗)

≤ 2 sup
θ∈Θ

|Ln(θ)− L(θ)|,

where the first inequality follows from the definition of θn. The quantity suph∈H |Ln(θ)−L(θ)| can
be written as supf∈F |Pnf − Pf | by letting F = {ℓ(·, θ) : θ ∈ Θ}. Hence, the rate of convergence
of supf∈F |Pnf − Pf | provides a performance guarantee of the empirical risk minimizer θn.
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Example 1.2 (Integral Probability Metrics). For a suitable class F of real-valued measurable
functions on X , it induces a metric on the space of probability measures on X , which takes the
following form: for two probability measures µ, ν on X , define

DF (µ, ν) := sup
f∈F

∣∣∣∣∫
X
f dµ−

∫
X
f dν

∣∣∣∣ .
We call DF an integral probability metric. Canonical examples include the total variation dis-
tance, Wasserstein distance, and maximum mean discrepancy. In this case, supf∈F |Pnf − Pf |
is DF (Pn, P ), which measures the distance between the empirical measure Pn and P under DF .
Hence, the rate of convergence of supf∈F |Pnf − Pf | provides a non-asymptotic guarantee on how
fast Pn converges to P under DF .

Remark 1.1 (On Measurability). In general, supf∈F |Pnf−Pf | is not necessarily a random variable
since a supremum of a possibly uncountable collection of random variables such as (|Pnf−Pf |)f∈F
might not be measurable. To circumvent this measurability issue, the following convention is
commonly used: given a stochastic process (Xt)t∈T , we define the expectation of its supremum as

E sup
t∈T

Xt := sup

{
Emax

t∈T0

Xt : ∀T0 ⊂ T such that |T0| < ∞
}
.

In this note, however, we will not delve into the measurability issue and we will always treat
supf∈F |Pnf − Pf | as a random variable.

References As mentioned earlier, standard texts [vdVW96, Kos08, vdVW23] are recommended
for a comprehensive study of empirical processes, with a focus on the asymptotic theory and
applications in statistics. Texts on high-dimensional probability [BLM13, vH14, Ver18] include
some non-asymptotic analysis of empirical processes. [AB99, Men03] focus on learning theory,
together with relevant non-asymptotic analysis of empirical processes. [Wai19] covers a wide range
of topics in high-dimensional statistics and probability, which includes some non-asymptotic analysis
of empirical processes. For some of the results in this note that are stated without proofs, the readers
are encouraged to consult the above references.

Settings Throughout this note, we assume the following settings unless otherwise stated.

• (X ,A) denotes a measurable space.

• P(X ) denotes the collection of all probability measures defined on (X ,A).

• P ∈ P(X ) and F ⊂ L1(P ).

• X1, . . . , Xn denote independent X -valued random variables whose laws are P .

• Pn denotes the empirical measure constructed by X1, . . . , Xn.

• Pnf and Pf denote the integrals of f with respect to Pn and P , respectively.

• supf∈F |Pnf − Pf | is often denoted by ∥Pn − P∥F .

Notation For n ∈ N, let [n] = {1, . . . , n}. For a vector x = (x1, . . . , xd) ∈ Rd, let ∥x∥2 denote
the standard Euclidean norm, and let ∥x∥∞ = maxi∈[d] |xi|.
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2 Preliminaries: Sub-Gaussian Random Variables

In the sequel, the Rademacher random variable σ will play a central role in deriving an upper bound
on E∥Pn−P∥F . The Rademacher random variable is a canonical example of sub-Gaussian random
variables whose tail decays as fast as the tail of a Gaussian random variable; such a condition is
succinctly representable by the moment generating function as follows.

Definition 2.1. A random variable Z is said to be sub-Gaussian with parameter ν > 0 if

EeλZ ≤ exp

(
νλ2

2

)
∀λ ∈ R.

One can see that the Rademacher random variable σ is sub-Gaussian with parameter 1:

Eeλσ =
eλ + e−λ

2
≤ exp

(
λ2

2

)
,

where the inequality can be verified by comparing the series expansion. Next, let us consider
independent Rademacher random variables σ1, . . . , σn. Letting σ = (σ1, . . . , σn) ∈ {±1}n, for any
s = (s1, . . . , sn) ∈ Rn, observe that ⟨σ, s⟩ =

∑n
i=1 σisi is sub-Gaussian with parameter ∥s∥22 because

Eeλ
∑n

i=1 σisi =

n∏
i=1

Eeλsiσi ≤
n∏

i=1

exp

(
s2iλ

2

2

)
= exp

(
∥s∥22λ2

2

)
.

In the sequel, we will encounter the supremum of a collection of random variables given as ⟨σ, s⟩,
that is, Λ := sups∈S⟨σ, s⟩. How can we compute the expectation EΛ? If S is finite, we can utilize
the following maximal inequality.

Lemma 2.1. Suppose random variables Z1, . . . , Zn are sub-Gaussian with parameter ν > 0. Then,

Emax
i∈[n]

Zi ≤
√

2ν log(n) and Emax
i∈[n]

|Zi| ≤
√

2ν log(2n).

In particular, for n ≥ 2,
Emax

i∈[n]
|Zi| ≤ 2

√
ν log(n).

Proof. For any t > 0, using Jensen’s inequality and sub-Gaussianity,

Emax
i∈[n]

Zi =
1

t
E log

(
max
i∈[n]

etZi

)
≤ 1

t
log

(
Emax

i∈[n]
etZi

)
≤ 1

t
log

(
E

n∑
i=1

etZi

)

≤ log(n)

t
+

νt

2
.

Let t =
√

(2/ν) log(n) and obtain the first inequality. Note that

Emax
i∈[n]

|Zi| = E max
i∈[2n]

Zi,

where we define Zn+i = −Zi for all i ∈ [n]. Apply the first inequality to Z1, . . . , Z2n to obtain the
second inequality.
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Example 2.1. Suppose that σ1, . . . , σn are independent Rademacher random variables. Letting
σ = (σ1, . . . , σn) ∈ {±1}n, for any finite subset S of Rn, Lemma 2.1 implies

Emax
s∈S

⟨σ, s⟩ ≤
√

2max
s∈S

∥a∥22 · log(|S|),

Emax
s∈S

|⟨σ, s⟩| ≤
√

2max
s∈S

∥a∥22 · log(2|S|).

Lastly, we present concentration inequalities for sub-Gaussian random variables. One can prove
that sub-Gaussian random variables are mean-zero. More importantly, it is possible to quantify the
extent of the concentration of a sub-Gaussian random variable around 0 using a technique often
referred to as the Cramér-Chernoff method.

Lemma 2.2. Let Z be a sub-Gaussian random variable with parameter ν > 0. For any t ≥ 0,

P(Z > t) ≤ exp

(
− t2

2ν

)
and P(|Z| > t) ≤ 2 exp

(
− t2

2ν

)
.

Equivalently, for any fixed δ ∈ (0, 1),

Z ≤
√

2ν log(1/δ) holds with probability at least 1− δ,

|Z| ≤
√

2ν log(2/δ) holds with probability at least 1− δ.

Proof. For any λ > 0

P(Z > t) = P(eλZ−λt > 1) = EI(eλZ−λt > 1) ≤ EeλZ−λt ≤ exp

(
νλ2

2
− λt

)
.

By taking λ = t/ν, we obtain the first inequality. Combine P(Z ≥ t) and P(Z ≤ −t) to obtain the
second inequality.
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3 Symmetrization and Rademacher Complexity

In this section, we upper bound E∥Pn−P∥F by the Rademacher complexity, which is the expectation
of the supremum of a symmetrized version of a process (Pnf)f∈F . Such a technique is called a
symmetrization principle. Due to symmetry, it is often easier to bound the Rademacher complexity
than E∥Pn − P∥F , which will be detailed in the subsequent sections.

3.1 Symmetrization and Rademacher Complexity

We first introduce a symmetrization technique that allows us to upper bound the expectation
E∥Pn − P∥F by the quantity called the Rademacher complexity. We also provide a one-sided
version of the symmetrization inequality that upper bounds E supf∈F (Pnf − Pf).

Lemma 3.1 (Symmetrization). Suppose σ1, . . . , σn are independent Rademacher random variables
such that σ1, . . . , σn and X1, . . . , Xn are independent. Then,

E sup
f∈F

|Pnf − Pf | ≤ 2 · 1
n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣ , (3.1)

E sup
f∈F

(Pnf − Pf) ≤ 2 · 1
n
E sup

f∈F

n∑
i=1

σif(Xi). (3.2)

Proof. Suppose Y1, . . . , Yn are independent X -valued random variables whose laws are P , namely,
they are independent copies of X1, . . . , Xn. Suppose the three collections of random variables,
σ1, . . . , σn, X1, . . . , Xn, and Y1, . . . , Yn are mutually independent. By definition,

E∥Pn − P∥F = EX sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Pf

∣∣∣∣∣ = EX sup
f∈F

∣∣∣∣∣EY
1

n

n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣ .
Here, EX and EY explicitly denote that the expectation is taken with respect to only X1, . . . , Xn

and only Y1, . . . , Yn, respectively. Since

EX sup
f∈F

∣∣∣∣∣EY
1

n

n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣ ≤ 1

n
EX sup

f∈F
EY

∣∣∣∣∣
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
≤ 1

n
EX,Y sup

f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣∣ ,
where EX,Y denotes the expectation with respect to X1, . . . , Xn, Y1, . . . , Yn. By definition,

EX,Y sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− f(Yi))

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f(Xi)− f(Yi))

∣∣∣∣∣ ,
where E denotes expectation with respect to all the random variables. Since

E sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f(Xi)− f(Yi))

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣+ E sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(Yi)

∣∣∣∣∣
= 2E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣ ,
we have (3.1). Similarly, we can derive (3.2).
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Observe from (3.1) and (3.2) that the following quantities appear in the upper bounds.

Definition 3.1. For P ∈ P(X ) and F ⊂ L1(P ), the Rademacher complexity of F with respect to
P for sample size n is defined as

R̄n(F , P ) :=
1

n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣ ,
Rn(F , P ) :=

1

n
E sup

f∈F

n∑
i=1

σif(Xi),

(3.3)

where σ1, . . . , σn are i.i.d Rademacher random variables that are independent of X1, . . . , Xn; here,
the expectation E is take with respect to σ1, . . . , σm and X1, . . . , Xn. The empirical Rademacher
complexity of F with respect to x1, . . . , xn ∈ X is defined as

R̄n(F , {xi}ni=1) :=
1

n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣ ,
Rn(F , {xi}ni=1) :=

1

n
E sup

f∈F

n∑
i=1

σif(xi),

where the expectation E is taken with respect to σ1, . . . , σn

By definition, the Rademacher complexity in Definition 3.1 can be rewritten using the empirical
Rademacher complexity:

R̄n(F , P ) = ER̄n(F , {Xi}ni=1) and Rn(F , P ) = ERn(F , {Xi}ni=1),

where the expectations on the right-hand sides are computed with respect to X1, . . . , Xn.

Remark 3.1. F = −F implies R̄n(F , P ) = Rn(F , P ) and R̄n(F , {xi}ni=1) = Rn(F , {xi}ni=1) in
Definitions 3.1.

To gain more insight into the above complexities, observe that we may rewrite the empirical
Rademacher complexity of F with respect to x1, . . . , xn ∈ X as

Rn(F , {xi}ni=1) =
1

n
E sup

s∈S
⟨σ, s⟩ (3.4)

where σ = (σ1, . . . , σn) ∈ Rn and

S := {(f(x1), . . . , f(xn)) : f ∈ F} ⊂ Rn.

Notice that σ = (σ1, . . . , σn) ∈ {±1}n can be viewed as a canonical direction of each orthant in
Rn. Hence, 1

n sups∈S⟨σ, s⟩ represents the largest value of S when projected to the direction σ,
measuring the correlation of a set S and a direction σ. Therefore, 1

nE sups∈S⟨σ, s⟩ can be thought
of as the complexity of the set S ⊂ Rn measured by averaging the correlation between S and σ
over all σ ∈ {±1}n. Consequently, the Rademacher complexity Rn(F , P ) is the expectation of the
complexity of a random set

{(f(X1), . . . , f(Xn)) : f ∈ F} ⊂ Rn.
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Remark 3.2. Given S ⊂ Rn, the Rademacher complexity of S is defined as

R(S) =
1

n
E sup

s∈S
⟨σ, s⟩,

where σ = (σ1, . . . , σn) ∈ {±1}n for independent Rademacher random variables σ1, . . . , σn.

Remark 3.3. Observe from (3.4) that we may write the empirical Rademacher complexity as

R̄n(F , {xi}ni=1) =
1

n
E sup

f∈F
|Zf | and Rn(F , {xi}ni=1) =

1

n
E sup

f∈F
Zf ,

where Zf :=
∑n

i=1 σif(xi) is a sub-Gaussian random variable with parameter
∑n

i=1 f(xi)
2.

We show a concrete case where we can derive the rate of convergence of the Rademacher
complexity.

Example 3.1 (Linear Functions). Let X = Rd and consider the following collection of linear
functions:

F = {x 7→ ⟨θ, x⟩ : θ ∈ Sd−1}.

Given x1, . . . , xn ∈ Rd, note that

sup
f∈F

n∑
i=1

σif(xi) = sup
θ∈Sd−1

〈
θ,

n∑
i=1

σixi

〉
=

∥∥∥∥ n∑
i=1

σixi

∥∥∥∥
2

.

Hence,

Rn(F , {xi}ni=1) ≤
E ∥
∑n

i=1 σixi∥2
n

≤

√
E ∥
∑n

i=1 σixi∥
2
2

n
=

√∑n
i=1 ∥xi∥22
n

,

where the second inequality follows from Jensen’s inequality, while the last equality is due to
Eσiσj = (Eσi)(Eσj) = 0. Therefore,

Rn(F , P ) ≤
E
√∑n

i=1 ∥Xi∥22
n

≤

√
E
∑n

i=1 ∥Xi∥22
n

=

√
E∥X1∥22

n
,

where the second inequality follows from Jensen’s inequality.

3.2 Boolean Functions and VC Dimension

We consider a class consisting of functions taking only two values from {0, 1}; in other words,
F = {1B : B ∈ B} for some B ⊂ A. Then, we have

∥Pn − P∥F = sup
B∈B

|Pn(B)− P (B)|.

For such a class, we can upper bound the empirical Rademacher complexity using Lemma 2.1
because it is the supremum of finitely many sub-Gaussian random variables. To see this, recall that
for fixed x1, . . . , xn ∈ X ,

R̄n(F , {xi}ni=1) =
1

n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣ = 1

n
E sup

s∈S
|⟨σ, s⟩|,
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where S := {(f(x1), . . . , f(xn)) : f ∈ F} ⊂ Rn. As F consists of Boolean functions, S is a finite
set satisfying |S| ≤ 2n; also, maxs∈S ∥s∥22 ≤ n. Therefore, as in Example 2.1,

1

n
E sup

s∈S
|⟨σ, s⟩| ≤ 1

n

√
2n log(2|S|) =

√
2 log(2|S|)

n
. (3.5)

Unfortunately, this upper bound is useless if |S| = 2n. It turns out, however, that for some class
F , we have |S| ≪ 2n for any choice of x1, . . . , xn ∈ X .

Definition 3.2. We say F shatters {x1, . . . , xn} ⊂ X if |{f(x1), . . . , f(xn) : f ∈ F}| = 2n. We
define the Vapnik-Chervonenkis (VC) dimension of F as

vc(F) = sup{|A| : A ⊂ X is shattered by F}.

We call F a VC class if vc(F) < ∞.

In words, the VC dimension of F is the largest integer n for which there exists a subset of X
with n elements that can be shattered by F .

Example 3.2. For X = R, one can verify the following.

(i) vc(F) = 1 for F = {1(−∞,a] : a ∈ R}.

(ii) vc(F) = 2 for F = {1(−∞,a] : a ∈ R} ∪ {1[a,∞) : a ∈ R}.

(iii) vc(F) = 2 for F = {1[a,b] : a, b ∈ R, a < b}.

One can generalize (ii) and (iii) to Rd as follows.

• vc(F) = d+ 1 for F = {1H : H is a halfspace of Rd}.

• vc(F) = d+ 1 for F = {1B : B is a closed ball of Rd}.

It turns out that for any VC class, |{f(x1), . . . , f(xn) : f ∈ F}| must grow at most polynomially
in n, namely, nvc(F), and thus is much smaller than 2n.

Theorem 3.1 (Sauer-Shelah). Let F be a VC class. Then, for any n ∈ N and x1, . . . , xn ∈ X ,

|{f(x1), . . . , f(xn) : f ∈ F}| ≤
(

en

vc(F)

)vc(F)

.

By Theorem 3.1, the term 2 log(2|S|) in (3.5) can be upper bounded by cF +2vc(F) log n, where
cF is a constant depending on vc(F). Therefore, we can upper bound the empirical Rademacher
complexity for a VC class F by

R̄n(F , {xi}ni=1) ≤
1

n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣ ≤
√

cF + 2vc(F) log n

n
.

By taking the expectation with respect to X1, . . . , Xn, we have

R̄n(F , P ) ≤
√

cF + 2vc(F) log n

n
. (3.6)

We often abbreviate this results as R̄n(F , P ) ≲
√

logn
n . We will later see that the extra factor

√
log n can be removed by a more sophisticated technique called chaining.
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4 Discretization via Covering

As seen in the previous section, a recurring task in empirical process theory is to bound the
expectation of suprema of stochastic processes such as E∥Pn − P∥F , the Rademacher complexity,
or the empirical Rademacher complexity. This section studies this task under a more general
framework; given a stochastic process indexed by a set T , say (Zt)t∈T , where Zt is a sub-Gaussian
random variable for all t ∈ T , we study methods to bound E supt∈T Zt. After developing general
principles, we will apply them to derive upper bounds on the Rademacher complexity.

4.1 Overview of the Main Idea

If T is finite, we have seen that E supt∈T Zt = Emaxt∈T Zt can be upper bounded by the maximal
inequality of sub-Gaussian random variables (Lemma 2.1). In general cases where T is possibly
infinite, we equip T with a suitable pseudometric ρ and cover T using finitely many ε-balls given
ε > 0. Equivalently, we find a finite subset, say Tε ⊂ T , with the following property: for any t ∈ T ,
there exists s ∈ Tε such that ρ(t, s) ≤ ε. Upon finding such a finite subset Tε, we can upper bound
the supremum supt∈T Zt as follows:

sup
t∈T

Zt ≤ sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + max
t∈Tε

Zt, (4.1)

namely, the supremum on the left-hand side is bounded above by the supremum of differences of
ε-close pairs plus the maximum of finitely many random variables (Zt)t∈Tε .

For the supremum of differences of ε-close pairs, we utilize smoothness of t 7→ Zt, which is true
in many applications. For instance, we often have Lipschitzness, namely, there exists a constant
L > 0 such that

|Zt − Zs| ≤ L · ρ(t, s) ∀t, s ∈ T,

which implies
E sup

t∈T
Zt ≤ Lε+ Emax

t∈Tε

Zt.

Next, we upper bound Emaxt∈Tε Zt using the maximal inequality; assuming Zt is a sub-Gaussian
random variable with parameter v for all t ∈ T , we have

E sup
t∈T

Zt ≤ Lε+
√
2v log |Tε|.

Note that this result is true for any finite subset Tε satisfying the following property: for any t ∈ T ,
there exists s ∈ Tε such that ρ(t, s) ≤ ε. Such a subset is called an ε-covering of T . Suppose
we have chosen Tε with the smallest possible cardinality while satisfying this property and let
N (ε, T, ρ) := |Tε|, which is called the ε-covering number of T . Then, we have

E sup
t∈T

Zt ≤ Lε+
√

2v logN (ε, T, ρ).

It turns out that ε 7→ N (ε, T, ρ) increases as ε ↓ 0. By analyzing the rate of this increase, one can
pick an optimal ε to obtain a concrete upper bound.

4.2 Covering Numbers

Given a pseudometric ρ on T , we quantify the minimal number of ε-balls to cover T , called the
ε-covering number, and analyze it as a function of ε.

11



Definition 4.1. Let (T, ρ) be a pseudometric space.

(i) Given ε > 0, a subset S ⊂ T is called a ε-covering of T if for each t ∈ T , there exists s ∈ S
such that ρ(t, s) ≤ ε.

(ii) The ε-covering number of T , denoted as N (ε, T, ρ), is defined as the smallest cardinality
among all ε-coverings of T ; any ε-covering that achieves this smallest cardinality is called a
minimal ε-covering.

(iii) A function ε 7→ logN (ε, T, ρ) is called the metric entropy of T .

(iv) We say (T, ρ) is a totally bounded pseudometric space if N (ε, T, ρ) < ∞ for all ε > 0.

Throughout, we mainly consider a totally bounded pseudometric space (T, ρ). Notice that
N (ε, T, ρ) monotonically increases as ε ↓ 0. The main principle here is that covering numbers
measure the size of a set T based on this increase rate.

Example 4.1 (Unit Cubes). Suppose T = [−1, 1] and ρ(t, s) = |t− s| for t, s ∈ T . Fix ε > 0 and
define

tk =

{
−1 + kε for k = 0, . . . , ⌊2ε⌋,
1 for k = ⌈2ε⌉.

Letting N = ⌈2ε⌉, define Tε := {t2i−1 : i = 1, . . . , ⌊N+1
2 ⌋}. Then, Tε is a ε-covering of T . Hence,

N (ε, [−1, 1], | · |) ≤ ⌊N+1
2 ⌋ ≤

⌈2ε⌉+ 1

2
<

1

ε
+ 1.

Now, suppose T = [−1, 1]d and ρ(t, s) = ∥t− s∥∞ for t, s ∈ T . Then, we can deduce that

N (ε, [−1, 1]d, ∥ · ∥∞) ≤
(
1

ε
+ 1

)d

.

As ∥a∥2 ≤
√
d∥a∥∞ for any a ∈ Rd, we have N (

√
dε, [−1, 1]d, ∥ · ∥2) ≤ N (ε, [−1, 1]d, ∥ · ∥∞). From

this, one can deduce that

N (ε, [−1, 1]d, ∥ · ∥2) ≤

(√
d

ε
+ 1

)d

.

Exact calculation of covering numbers may be infeasible. In most cases, it suffices to derive
bounds on them. Packing numbers serve as a tool for bounding covering numbers.

Definition 4.2. Let (T, ρ) be a pseudometric space. Given ε > 0, a subset S ⊂ T is called a
ε-packing if ρ(s1, s2) > ε for any distinct s1, s2 ∈ S. The ε-packing number, denoted as M(ε, T, ρ),
is defined as the largest cardinality among all ε-packings of T . Any ε-packing that achieves this
largest cardinality is called a maximal ε-packing.

Lemma 4.1. Let (T, ρ) be a pseudometric space. For any ε > 0,

M(2ε, T, ρ) ≤ N (ε, T, ρ) ≤ M(ε, T, ρ).

Proof. Note that any maximal ε-packing should be a ε-covering due to its maximality. Therefore,
N (ε, T, ρ) ≤ M(ε, T, ρ) follows. Meanwhile, if there is a ε-covering with N elements, the cardinality
of any 2ε-packing cannot exceed N ; otherwise, there must exist two points of the 2ε-packing
belonging to the same ε-ball of the ε-covering. Hence, M(2ε, T, ρ) ≤ N (ε, T, ρ).
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Example 4.2 (Euclidean Balls). For r > 0 and x ∈ Rd, let Br(x) denote the closed ball of radius
r centered at x under the Euclidean norm ∥ · ∥2. Let us upper bound the ε-covering number
of B1(0). To this end, consider a maximal ε-packing of B1(0), say, x1, . . . , xm ∈ B1(0), where
m = M(ε,B1(0), ∥ · ∥2). By definition, B ε

2
(xi)’s are disjoint. Therefore, the volume of their union

is m times the volume of B ε
2
(0), that is,

vol(∪m
i=1B ε

2
(xi)) = m · vol(B ε

2
(0)).

As xi ∈ B1(0), we have B ε
2
(xi) ⊂ B1+ ε

2
(0) for all i = 1, . . . ,m. Hence,

m · vol(B ε
2
(0)) = vol(∪m

i=1B ε
2
(xi)) ⊂ vol(B1+ ε

2
(0)),

which leads to

m ≤
vol(B1+ ε

2
(0))

vol(B ε
2
(0))

=

(
1 + ε

2
ε
2

)d

=

(
2

ε
+ 1

)d

.

By Lemma 4.1, we have

N (ε,B1(0), ∥ · ∥2) ≤
(
2

ε
+ 1

)d

.

Remark 4.1. We often consider situations where T is a subset of some larger set T+ and the
pseudometric ρ extends to T+. In this case, we may define coverings based on points in T+ which
may not necessarily be contained in T . Formally, let us call S ⊂ T+ a ε-covering of T in T+ if for
each t ∈ T , there exists s ∈ S such that ρ(t, s) ≤ ε; also, N+(ε, T, ρ) be the ε-covering number of
T in T+, namely, the smallest cardinality among all ε-coverings of T in T+. Then, we have

N+(ε, T, ρ) ≤ N (ε, T, ρ) ≤ N+(ε/2, T, ρ). (4.2)

The first inequality of (4.2) follows from the definition. To show the second inequality of (4.2),
suppose s1, . . . , sn ∈ T+ satisfy T = ∪n

i=1{t ∈ T : ρ(t, si) ≤ ε/2} =: ∪n
i=1Bi; in other words,

{s1, . . . , sn} is a ε/2-covering of T in T+. Assuming Bi is nonempty, pick any ti ∈ Bi ⊂ T . Then,
{t1, . . . , tn} ⊂ T is a ε-covering of T , which proves the second inequality of (4.2).

4.3 Covering Numbers of Function Classes

Now, we consider a class of functions F on a set X and study the covering numbers of F under
various pseudometrics. First, consider the uniform metric induced by the uniform norm ∥ · ∥∞: for
any functions f, g on X , define

∥f − g∥∞ = sup
x∈X

|f(x)− g(x)|.

The uniform metric satisfies the three metric axioms. Hence, if ∥f − g∥∞ < ∞ for all f, g ∈ F , the
uniform metric is a metric on F . For instance, this is true if F is uniformly bounded, that is, there
exist constants a, b ∈ R such that a ≤ f(x) ≤ b for all f ∈ F and x ∈ X . Now, let us denote by
N (ε,F , ∥ · ∥∞) the ε-covering number of F under the uniform metric.

Example 4.3. Suppose X = [0, 1] and consider the following class of Lipschitz functions:

FL = {f : X → R | f(0) = 0 and |f(x)− f(x′)| ≤ L|x− x′| ∀x, x′ ∈ X}.

For small ε > 0, one can show that logN (ε,FL, ∥ · ∥∞) roughly scales as L
ε . See Example 5.10 of

[Wai19] and Lemma 5.16 of [vH14].
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The uniform metric is somewhat too strong in a sense that the covering number N (ε,F , ∥ · ∥∞)
may be undesirable large. More technically, the balls defined by the uniform metric are small and
thus constitute a strong (fine) topology on F , leading to large covering numbers. Large covering
numbers are undesirable because they lead to loose bounds on the expectation of suprema of
stochastic processes. For instance, suppose X = R and F = {1(−∞,x] : x ∈ R} as in the Glivenko-
Cantelli theorem. As ∥1(−∞,x] − 1(−∞,x′]∥∞ = 1 if x ̸= x′, we have N (ε,F , ∥ · ∥∞) = ∞ for all
ε < 1. Recall, however, that vc(F) = 1. Accordingly, unlike the VC dimension, the covering
number N (ε,F , ∥ · ∥∞) does not provide a meaningful measure of the complexity of F .

To avoid this, we consider a pseudometric that is weaker (smaller) than the uniform metric.
To this end, we define a pseudometric that compares functions based on the average discrepancy
between their values at a finite set of points, which will be particularly useful for bounding the
empirical Rademacher complexity.

Definition 4.3. Let F be a collection of real-valued functions on a set X and p ∈ [1,∞] be a fixed
exponent. Given x1, . . . , xn ∈ X , let µn denote the uniform measure supported on {x1, . . . , xn},
i.e., µn = 1

n

∑n
i=1 δxi . Note that Lp(µn) leads to a pseudometric such that for any f, g : X → R,

∥f − g∥Lp(µn) :=

{
maxi=1,...,n |f(xi)− g(xi)| if p = ∞,(
1
n

∑n
i=1 |f(xi)− g(xi)|p

)1/p
if p ∈ [1,∞).

Let N (ε,F , Lp(µn)) be the ε-covering number of F under the pseudometric Lp(µn). We define the
uniform ε-covering number of X as follows:

Np(ε,F , n) := sup

{
N (ε,F , Lp(µn)) : µn =

1

n

n∑
i=1

δxi , x1, . . . , xn ∈ X

}
,

where the supremum is taken over all choices of n points x1, . . . , xn ∈ X .

Note that for any f : X → R,

∥f∥L1(µn) ≤ ∥f∥Lp(µn) ≤ ∥f∥L∞(µn) ≤ ∥f∥∞ ∀p ∈ (1,∞),

which implies

N (ε,F , L1(µn)) ≤ N (ε,F , Lp(µn)) ≤ N (ε,F , L∞(µn)) ≤ N (ε,F , ∥ · ∥∞) ∀p ∈ (1,∞).

Therefore, Lp(µn) indeed induces a weaker pseudometric than the uniform metric. However, using
the covering number N (ε,F , Lp(µn)) to bound the empirical Rademacher complexity leads to
an upper bound that also depends on the choice of x1, . . . , xn ∈ X , whose expectation must be
computed to bound the Rademacher complexity. To avoid this, we define the uniform ε-covering
number Np(ε,F , n), which is the supremum of N (ε,F , Lp(µn)) over all choices of x1, . . . , xn ∈ X .
This allows us to derive a bound on the Rademacher complexity that does not depend on the
choice of x1, . . . , xn ∈ X . By definition, uniform ε-covering numbers Np(ε,F , n) are smaller than
the ε-covering number under the uniform metric:

N1(ε,F , n) ≤ Np(ε,F , n) ≤ N∞(ε,F , n) ≤ N (ε,F , ∥ · ∥∞) ∀p ∈ (1,∞).

We saw that N (ε,F , ∥ · ∥∞) = ∞ can happen for a VC class F . However, the uniform ε-covering
number is always finite if F is a VC class. The following theorem provides a stronger result that
relates the ε-covering number N (ε,F , Lp(µ)) for any µ ∈ P(X ) to the VC dimension of F .
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Theorem 4.1 (Haussler). There is an absolute constant K > 0 such that

N (ε,F , Lp(µ)) ≤ K · vc(F) · (4e)vc(F)

(
1

ε

)p·vc(F)

(4.3)

for any VC class F , for any µ ∈ P(X ), p ∈ [1,∞), and ε ∈ (0, 1).

For the proof, see Theorem 2.6.4 of [vdVW23]. One can immediately see that the right-hand
side of (4.3) provides an upper bound on the uniform ε-covering number Np(ε,F , n).

4.4 Bounding Rademacher Complexities via Discretization

Let us upper bound the Rademacher complexity Rn(F , P ), where F is uniformly bounded, i.e.,
supf∈F ∥f∥∞ ≤ b for some constant b > 0. Recall that the empirical Rademacher complexity of F
with respect to x1, . . . , xn ∈ X is

Rn(F , {xi}ni=1) = E sup
f∈F

1

n

n∑
i=1

σif(xi)︸ ︷︷ ︸
=:Zf

.

Fix p ∈ [1,∞]. Given ε > 0, take a minimal ε-covering Fε of F under Lp(µn), where µn is the
uniform measure supported on {x1, . . . , xn}. Then, using (4.1),

sup
f∈F

Zf ≤ sup
f,g∈F

∥f−g∥Lp(µn)≤ε

(Zf − Zg) + max
f∈Fε

Zf ≤ ε+max
f∈Fε

Zf ,

where the second inequality follows from

|Zf − Zg| ≤
1

n

n∑
i=1

|f(xi)− g(xi)| = ∥f − g∥L1(µn) ≤ ∥f − g∥Lp(µn).

Meanwhile, we can verify that Zf is sub-Gaussian with parameter b2/n for any f ∈ F . Hence,
using |Fε| = N(ε,F , Lp(µn)),

Emax
f∈Fε

Zf ≤
√

2b2 logN (ε,F , Lp(µn))

n
.

Therefore,

Rn(F , {xi}ni=1) ≤ ε+

√
2b2 logN (ε,F , Lp(µn))

n
≤ ε+

√
2b2 logNp(ε,F , n)

n

As this is true for any x1, . . . , xn ∈ X , we conclude that

Rn(F , P ) ≤ ε+

√
2b2 logNp(ε,F , n)

n
.

Although ths above inequality is true for any p ∈ [1,∞], the tightest one is produced by choosing
p = 1. Similarly, one can derive

R̄n(F , {xi}ni=1) ≤ ε+

√
2b2 log 2Np(ε,F , n)

n
,

which leads to

R̄n(F , P ) ≤ ε+

√
2b2 log 2Np(ε,F , n)

n
.
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Proposition 4.1. Suppose supf∈F ∥f∥∞ ≤ b for some constant b > 0. Then, for any ε > 0 and
p ∈ [1,∞],

Rn(F , P ) ≤ ε+

√
2b2 logNp(ε,F , n)

n
,

R̄n(F , P ) ≤ ε+

√
2b2 log 2Np(ε,F , n)

n
.

Remark 4.2. In Proposition 4.1, it is worth noting that we may allow coverings of F that are
not subsets of F when defining the uniform covering number Np(ε,F , n) and the covering number
N(ε,F , Lp(µn)); recall Remark 4.1. In this case, for a minimal ε-covering Fε of F under Lp(µn),
we have

sup
f∈F

Zf ≤ sup
f,g∈F∪Fε

∥f−g∥Lp(µn)≤ε

(Zf − Zg) + max
f∈Fε

Zf ≤ ε+max
f∈Fε

Zf ,

where the second inequality again follows from ∥f − g∥Lp(µn) ≤ ε.

Let us apply Proposition 4.1 to a VC class F . As briefly mentioned earlier, Theorem 4.1 implies

Np(ε,F , n) ≤ K · vc(F) · (4e)vc(F)

(
1

ε

)p·vc(F)

.

By Proposition 4.1, we have

R̄n(F , P ) ≤ ε+

√
2 log 2N1(ε,F , n)

n
≤ ε+

√
cF + 2vc(F) log(1/ε)

n
,

where cF is a constant depending on vc(F). Letting ε = 1/
√
n, we have

R̄n(F , P ) ≤
√

1

n
+

√
cF + vc(F) log n

n
,

which leads to R̄n(F , P ) ≲
√

logn
n just as (3.6) did. Not surprisingly, applying Proposition 4.1 for a

VC class is essentially equivalent to applying the maximal inequality to the empirical Rademacher
complexity as we did in Section 3.2. However, this bound can be improved by removing the term
log n.
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5 Chaining

In Section 4, we have derived an upper bound on E supt∈T Zt, where Zt’s are sub-Gaussian random
variables, by discretizing T via covering, namely, letting (T, ρ) be a pseudometric space, find a
minimal ε-covering Tε of T , which yields

E sup
t∈T

Zt ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + Emax
t∈Tε

Zt. (5.1)

The first term on the right-hand side of (5.1) is controlled by means of smoothness of t 7→ Zt;
the second term was bounded by Lemma 2.1—the maximal inequality of sub-Gaussian random
variables—which yields

E sup
t∈T

Zt ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) +
√
2v logN (ε, T, ρ).

It turns out that the term
√
logN (ε, T, ρ) leads to a relatively loose bound. The main goal of this

section is to improve this term by using Dudley’s chaining technique, which leads to a term given
by integrating u 7→

√
logN (u, T, ρ) over a suitable interval.

5.1 Dudley’s Chaining Technique

We apply Dudley’s chaining technique to upper bound E supt∈T (Zt −Zt0), where t0 is any suitable
pivotal point, which is possibly outside of T , but the pseudometric ρ extends to T ∪{t0}. The main
assumption to apply Dudley’s chaining technique is that the collection of random variables Zt’s is a
sub-Gaussian process, namely, Zt−Zs is sub-Gaussian with parameter ρ2(t, s) for any t, s ∈ T∪{t0}.
In other words, the parameter of a sub-Gaussian random variable Zt−Zs is essentially the closeness
of t, s under the pseudometric ρ. This setting covers the empirical Rademacher complexity as it
can be written as supf∈F Zf , where

Zf :=
1√
n

n∑
i=1

σif(xi) for any f : X → R,

which yields

Zf − Zg is sub-Gaussian with parameter ∥f − g∥2L2(µn)
for any f, g : X → R.

Here, µn is the uniform measure supported on {x1, . . . , xn} as in Definition 4.3. Then, letting f0
be the zero function which may be contained in F or not, analyzing supf∈F Zf is equivalent to
analyzing supf∈F (Zf − Zf0) as Zf0 = 0. In this setting, we can simply modify (5.1) as below: for
any ε-covering Tε of T ,

E sup
t∈T

(Zt − Zt0) ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + Emax
t∈Tε

(Zt − Zt0), (5.2)

Then, the aforementioned discretization idea from Section 4 can be succinctly summarized as
follows.
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Proposition 5.1. Suppose (T, ρ) is a pseudometric space and let t0 be any point that is possibly
outside of T such that ρ extends to T ∪ {t0}. Assume Zt − Zs is sub-Gaussian with parameter
ρ2(t, s) for any t, s ∈ T ∪ {t0}. Then, for ∆ ≥ supt∈T ρ(t, t0) and ε > 0,

E sup
t∈T

(Zt − Zt0) ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) +
√
2∆2 logN (ε, T, ρ). (5.3)

Proof. Let Tε be a minimal ε-covering of T . Applying the maximal inequality to the collection
(Zt − Zt0)t∈Tε consisting of |Tε| sub-Gaussian random variables with parameter ∆2,

Emax
t∈Tε

(Zt − Zt0) ≤
√
2∆2 log |Tε| =

√
2∆2 logN (ε, T, ρ).

Combine this result with (5.2).

Dudley’s chaining technique provides an upper bound on Emaxt∈Tε(Zt−Zt0) that is tighter than
the sub-Gaussian maximal inequality. In Proposition 5.1, the maximal inequality yields an upper
bound involving the term ∆

√
logN (ε, T, ρ). Dudley’s chaining technique improves this bound by

considering the following integral: ∫ ∆/2

ε/4

√
logN (u, T, ρ) du.

The main idea is to decompose the difference Zt − Zt0 in Proposition 5.1 into the sum of several
differences using a chaining relation, where we apply the maximal inequality to each difference
separately.

Theorem 5.1 (Chaining). Suppose (T, ρ) is a pseudometric space and let t0 be any point that
is possibly outside of T such that ρ extends to T ∪ {t0}. Assume Zt − Zs is sub-Gaussian with
parameter ρ2(t, s) for any t, s ∈ T ∪ {t0}. Then, for ∆ ≥ supt∈T ρ(t, t0) and ε ∈ [0,∆),

E sup
t∈T

(Zt − Zt0) ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + 16

∫ ∆/2

ε/4

√
logN (u, T, ρ) du.

Proof. Pick a minimal ε-covering Tε of T . Due to (5.2), it suffices to prove

Emax
t∈Tε

(Zt − Zt0) ≤ 16

∫ ∆/2

ε/4

√
logN (u, T, ρ) du.

For j ∈ N, let εj = ∆ · 2−j and Tj be a minimal εj-covering of Tε in T so that |Tj | ≤ N (εj , T, ρ)
as Tε ⊂ T ; also, define Πj : Tε → Tj such that ρ(Πj(t), t) ≤ εj for all t ∈ Tε. Also, let ε0 = ∆,
T0 = {t0}, and Π0(t) = t0 for all t ∈ Tε so that Π0 : Tε → T0 is well-defined and ρ(Π0(t), t) ≤ ε0 is
true for any t ∈ Tε as well. Since ε < ∆, we can pick J ∈ N such that εJ ≤ ε < 2εJ . Now, we have

Zt − Zt0 = Zt − ZΠJ (t) +

J∑
j=1

(ZΠj(t) − ZΠj−1(t)).

Note that (Zt − ZΠJ (t))t∈Tε is a collection of sub-Gaussian random variables with parameter ε2J
since ρ(t,ΠJ(t)) ≤ εJ . Hence, the sub-Gaussian maximal inequality implies

Emax
t∈Tε

(Zt − ZΠJ (t)) ≤
√

2ε2J log |Tε| = εJ
√
2 logN (ε, T, ρ) ≤ εJ

√
2 logN (εJ , T, ρ),
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where the last inequality holds because εJ ≤ ε. Similarly, (ZΠj(t) − ZΠj−1(t))t∈Tε is a collection of

sub-Gaussian random variables with parameter 9ε2j since

ρ(Πj(t),Πj−1(t)) ≤ ρ(Πj(t), t) + ρ(Πj−1(t), t) ≤ εj + εj−1 = 3εj .

As the number of random variables in this collection is at most |Tj | · |Tj−1| ≤ |Tj |2, where we use
|Tj−1| ≤ |Tj | by construction, the maximal inequality of sub-Gaussian random variables implies

Emax
t∈Tε

(ZΠj(t) − ZΠj−1(t)) ≤
√
2(3εj)2 log |Tj |2 ≤ 6εj

√
logN (εj , T, ρ),

where the last inequality uses |Tj | ≤ N (εj , T, ρ) that was mentioned earlier. Combining the above
inequalities, we have

Emax
t∈Tε

(Zt − Zt0) ≤ εJ
√

2 logN (εJ , T, ρ) +
J∑

j=1

6εj

√
logN (εj , T, ρ)

≤
J∑

j=1

8εj

√
logN (εj , T, ρ).

Also, as u 7→ logN (u, T, ρ) is monotonically decreasing, we have

εj
2

√
logN (εj , T, ρ) ≤

∫ εj

εj+1

√
logN (u, T, ρ) du.

Therefore,

Emax
t∈Tε

(Zt − Zt0) ≤ 16
J∑

j=1

∫ εj

εj+1

√
logN (u, T, ρ) du

= 16

∫ ∆/2

εJ/2

√
logN (u, T, ρ) du

≤ 16

∫ ∆/2

ε/4

√
logN (u, T, ρ) du,

where the last inequality holds since ε < 2εJ .

Remark 5.1. In Theorem 5.1, one may consider dropping ε in the integral by considering the
following looser bound:

E sup
t∈T

(Zt − Zt0) ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + 16

∫ ∆/2

0

√
logN (u, T, ρ) du.

However, this bound may be useless if N (u, T, ρ) increases too quickly as u ↓ 0.

Let us compare Proposition 5.1 and Theorem 5.1:

Emax
t∈Tε

(Zt − Zt0) ≤ const ·∆
√
logN (ε, T, ρ), (Proposition 5.1)

Emax
t∈Tε

(Zt − Zt0) ≤ const ·
∫ ∆/2

ε/4

√
logN (u, T, ρ) du. (Theorem 5.1)

Compare the two areas: the rectangle versus the are below a curve u 7→
√
logN (u, T, ρ) as shown

in Figure 1.
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u

√
logN (u, T, ρ)

√
log |Tε|

∆∆/2εε/4

Figure 1: Visual comparison of the bounds based on the standard sub-Gaussian maximal inequality
(Proposition 5.1) and chaining (Theorem 5.1).

Remark 5.2. We can apply the results so far to E supt∈T |Zt − Zt0 |. First, we modify (5.2) as
follows: for any ε-covering Tε of T ,

E sup
t∈T

|Zt − Zt0 | ≤ E sup
t,s∈T

ρ(t,s)≤ε

|Zt − Zs|+ Emax
t∈Tε

|Zt − Zt0 |

= E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + Emax
t∈Tε

|Zt − Zt0 |,

where the equality is due to the symmetry. Then, under the assumptions of Proposition 5.1, one
can show that

E sup
t∈T

|Zt − Zt0 | ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) +
√

2∆2 log 2N (ε, T, ρ).

Similarly, under the assumptions of Theorem 5.1, one can show that

E sup
t∈T

|Zt − Zt0 | ≤ E sup
t,s∈T

ρ(t,s)≤ε

(Zt − Zs) + 16

∫ ∆/2

ε/4

√
log 2N (u, T, ρ) du.

Remark 5.3. In both Proposition 5.1 and Theorem 5.1, the covering number N (u, T, ρ) is based
on the coverings in (T, ρ). As noted in Remark 4.1, one can easily derive upper bounds based on
the covering number N+(u/2, T, ρ), namely, the covering number based on the coverings in a larger
pseudometric (T+, ρ) which extends (T, ρ).

5.2 Bounding Rademacher Complexities via Chaining

Let us apply the chaining technique to upper bound the empirical Rademacher complexity of F
with respect to x1, . . . , xn ∈ X . First, define

Zf :=
1√
n

n∑
i=1

σif(xi) for any f : X → R,

which ensures that Zf − Zg is a sub-Gaussian random variable with parameter ∥f − g∥2L2(µn)
for

any f, g : X → R, where µn is the uniform measure supported on {x1, . . . , xn} as in Definition 4.3.
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Now, we can apply Theorem 5.1 with a pseudometric L2(µn). First, as in Section 4.4, we have

sup
f,g∈F

∥f−g∥L2(µn)≤ε

(Zf − Zg) ≤ sup
f,g∈F

∥f−g∥L2(µn)≤ε

√
n∥f − g∥L1(µn) ≤

√
nε.

Letting f0 be the zero function and ∆n := supf∈F ∥f − f0∥L2(µn) = supf∈F ∥f∥L2(µn), Theorem 5.1
implies that for any ε ∈ [0,∆n),

E sup
f∈F

Zf = E sup
f∈F

(Zf − Zf0) ≤
√
nε+ 16

∫ ∆n/2

ε/4

√
logN (u,F , L2(µn)) du.

Hence,

Rn(F , {xi}ni=1) =
1√
n
E sup

f∈F
Zf ≤ inf

ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
logN (u,F , L2(µn)) du

)
.

To derive an upper bound on the Rademacher complexity of F with respect to P for sample size
n, we simply take the expectation to the both sides:

Rn(F , P ) ≤ E inf
ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
logN (u,F , L2(µn)) du

)
,

where the expectation is taken with respect to x1, . . . , xn assuming they are i.i.d. from P . Similarly,
we can derive an upper bound on

R̄n(F , {xi}ni=1) =
1√
n
E sup

f∈F
|Zf |.

Using Remark 5.2, one can deduce that

R̄n(F , {xi}ni=1) ≤ inf
ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
log 2N (u,F , L2(µn)) du

)
and

R̄n(F , P ) ≤ E inf
ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
log 2N (u,F , L2(µn)) du

)
,

Proposition 5.2. The empirical Rademacher complexity of F with respect to x1, . . . , xn ∈ X
satisfies the following: letting ∆n = supf∈F ∥f∥L2(µn), where µn is the uniform measure supported
on {x1, . . . , xn} as in Definition 4.3, for any ε ∈ [0,∆n),

Rn(F , {xi}ni=1) ≤ ε+
16√
n

∫ ∆n/2

ε/4

√
logN (u,F , L2(µn)) du,

R̄n(F , {xi}ni=1) ≤ ε+
16√
n

∫ ∆n/2

ε/4

√
log 2N (u,F , L2(µn)) du.

Accordingly, the Rademacher complexity of F with respect to P for sample size n satisfies the
following:

Rn(F , P ) ≤ E inf
ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
logN (u,F , L2(µn)) du

)
,

R̄n(F , P ) ≤ E inf
ε∈[0,∆n)

(
ε+

16√
n

∫ ∆n/2

ε/4

√
log 2N (u,F , L2(µn)) du

)
,

where the expectation is taken with respect to x1, . . . , xn assuming they are i.i.d. from P .
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In Proposition 5.2, the upper bounds on the Rademacher complexities Rn(F , P ) and R̄n(F , P )
depend on the expectation of complicated quantities involving ∆n and N (u,F , L2(µn)) which are
highly nontrivial to compute. While the covering numberN (u,F , L2(µn)) can be upper bounded by
the uniform ε-covering number N2(u,F , n), which does not depend on x1, . . . , xn, the quantity ∆n

can be tricky in general because it also affects the range of ε in the integral. Uniform boundedness
of F can help in this situation. If supf∈F ∥f∥∞ ≤ b for some constant b > 0, we have ∆n ≤ b for
any x1, . . . , xn ∈ X . Hence, we have for any ε ∈ [0,∆n),

Rn(F , {xi}ni=1) ≤ ε+
16√
n

∫ b/2

ε/4

√
logN2(u,F , n) du.

Now, letting ε → 0, we have

Rn(F , {xi}ni=1) ≤
16√
n

∫ b/2

0

√
logN2(u,F , n) du,

where the right-hand side is now independent of x1, . . . , xn ∈ X . Therefore, taking the expectation
with respect to x1, . . . , xn, we conclude that

Rn(F , P ) ≤ 16√
n

∫ b/2

0

√
logN2(u,F , n) du.

Corollary 5.1. Suppose supf∈F ∥f∥∞ ≤ b for some constant b > 0. Then,

Rn(F , P ) ≤ 16√
n

∫ b/2

0

√
logN2(u,F , n) du,

R̄n(F , P ) ≤ 16√
n

∫ b/2

0

√
log 2N2(u,F , n) du.

Proposition 5.3. There is an absolute constant C > 0 such that

E sup
f∈F

|Pnf − Pf | ≤ C

√
vc(F)

n
(5.4)

for any VC class F , n ∈ N, and P ∈ P(X ).

Proof. By Theorem 4.1, for any VC class F , n ∈ N, and u ∈ (0, 1), we have√
log 2N2(u,F , n) ≤

√
log(2K) + log(vc(F)) + vc(F) log(4e) + 2vc(F) log(1/u)

≤
√
(log(2K) + 1)vc(F) + vc(F) log(4e) + 2vc(F) log(1/u),

where we use 1 ≤ vc(F) and log(vc(F)) ≤ vc(F). Hence, Corollary 5.1 implies

R̄n(F , P ) ≤
√

vc(F)

n

∫ 1/2

0
16
√
K ′ + 2 log(1/u) du,

where K ′ = log(2K) + 1 + log(4e). Therefore, we have (5.4).
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6 Bounds on Probabilities via Concentration

As mentioned in Section 1, we now derive a probabilistic bound on ∥Pn −P∥F that takes the form
of (1.2) like the DKW inequality. To this end, we quantify the concentration of ∥Pn −P∥F around
its mean E∥Pn−P∥F . Under mild assumptions on F , it turns out that ∥Pn−P∥F , after centering,
is a sub-Gaussian random variable. Note that ∥Pn − P∥F is a function of independent X -valued
random variables X1, . . . , Xn whose laws are P , say ∥Pn−P∥F = L(X1, . . . , Xn). Sub-Gaussianity
of L(X1, . . . , Xn) is guaranteed if L satisfies a certain condition called the bounded differences
property.

Theorem 6.1 (McDiarmid). Let L : X n → R be a measurable function. Suppose there there exist
constants c1, . . . , cn such that for each i ∈ {1, . . . , n},

|L(x1, . . . , xi, . . . , xn)− L(x1, . . . , x
′
i, . . . , xn)| ≤ ci (6.1)

holds for any x1, . . . , xn, x
′
i ∈ X . Let X1, . . . , Xn be any independent X -valued random vari-

ables. Then, L(X1, . . . , Xn) − EL(X1, . . . , Xn) is a sub-Gaussian random variable with parameter∑n
i=1 c

2
i /4.

One of the most common classes in practice is a uniformly bounded class of functions. For such
a class F , the bounded differences property (6.1) is satisfied as shown in the following proposition.

Proposition 6.1. Suppose there exist constants a, b ∈ R such that a ≤ f(x) ≤ b for all f ∈ F and
x ∈ X . Then,

sup
f∈F

|Pnf − Pf | − E sup
f∈F

|Pnf − Pf | and sup
f∈F

(Pnf − Pf)− E sup
f∈F

(Pnf − Pf)

are sub-Gaussian random variables with parameter (b−a)2

4n . Hence,

sup
f∈F

|Pnf − Pf | ≤ E sup
f∈F

|Pnf − Pf |+
√

(b− a)2 log(1/δ)

2n
,

sup
f∈F

(Pnf − Pf) ≤ E sup
f∈F

(Pnf − Pf) +

√
(b− a)2 log(1/δ)

2n
,

each of which holds with probability at least 1− δ.

Proof. Define

L(x1, . . . , xn) = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− Pf

∣∣∣∣∣
so that L(X1, . . . , Xn) = supf∈F |Pnf − Pf |. Then, one can verify that

|L(x1, . . . , xi, . . . , xn)− L(x1, . . . , x
′
i, . . . , xn)| ≤

b− a

n
. (6.2)

Using Theorem 6.1, we conclude ∥Pn−P∥F −E∥Pn−P∥F is a sub-Gaussian random variable with
parameter

1

4

n∑
i=1

(
b− a

n

)2

=
(b− a)2

4n
.

For supf∈F (Pnf − Pf), we can apply the same argument to L(x1, . . . , xn) = supf∈F (Pnf − Pf),
which satisfies (6.2) as well.
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Now, we combine Proposition 6.1 with Lemma 3.1, replacing the expectation E∥Pn−P∥F with
the Rademacher complexity R̄n(F , P ).

Proposition 6.2. Suppose there exist constants a, b ∈ R such that a ≤ f(x) ≤ b for all f ∈ F and
x ∈ X . Then,

sup
f∈F

|Pnf − Pf | ≤ 2R̄n(F , P ) +

√
(b− a)2 log(1/δ)

2n
,

sup
f∈F

(Pnf − Pf) ≤ 2Rn(F , P ) +

√
(b− a)2 log(1/δ)

2n
,

each of which holds with probability at least 1− δ.

Remark 6.1. As in Remark 3.1, the two inequalities in Proposition 6.2 are the same if F = −F .

Looking at the two terms on the right-hand side of the bound on ∥Pn−P∥F in Proposition 6.2,
note that the order of the bound is determined by R̄n(F , P ) ∨ 1√

n
.

Example 6.1 (Linear Functions). Recall from Example 3.1 that for X = Rd and the class of linear
functions F = {x 7→ ⟨θ, x⟩ : θ ∈ Sd−1}, we have

Rn(F , P ) ≤
√

E∥X1∥22
n

.

Now, further assume that P is supported on a compact set, say {x ∈ Rd : ∥x∥2 ≤ M} for some
M > 0. Then, we may assume X = {x ∈ Rd : ∥x∥2 ≤ M} so that F is a uniformly bounded class
of functions defined on X ; we have −M ≤ f ≤ M for all f ∈ F . Also, Rn(F , P ) ≤ M/

√
n; hence,

by Proposition 6.2,

∥Pn − P∥F ≤ 2M√
n

+

√
2M2 log(1/δ)

n

with probability at least 1− δ; note that we have used F = −F . We can summarize this result as
follows:

∥Pn − P∥F ≲
1√
n

with high probability.

Example 6.2 (VC Class). By Propositions 5.3 and 6.2,

∥Pn − P∥F ≤ C

√
vc(F)

n
+

√
log(1/δ)

2n

holds with probability at least 1 − δ; this is almost the same as the DKW inequality (1.1).1 We
abbreviate this result as

∥Pn − P∥F ≲

√
vc(F)

n
with high probability.

1Derivation of (1.1) requires rather complicated techniques which can be found in [Mas90].
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